Skip to main content

Level Sets of Functions and Symmetry Sets of Surface Sections

  • Conference paper
Mathematics of Surfaces XI

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3604))

Abstract

We prove that the level sets of a real C s function of two variables near a non-degenerate critical point are of class C [s/2] and apply this to the study of planar sections of surfaces close to the singular section by the tangent plane at an elliptic or hyperbolic point, and in particular at an umbilic point. We go on to use the results to study symmetry sets of the planar sections. We also analyse one of the cases coming from a degenerate critical point, corresponding to an elliptic cusp of Gauss on a surface, where the differentiability is reduced to C [s/4]. However in all our applications we assume C  ∞  smoothness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banchoff, T.F., Gaffney, T., McCrory, C.: Cusps of Gauss Mappings. Pitman Research Notes in Mathematics, vol. 55 (1982)

    Google Scholar 

  2. Bruce, J.W., Giblin, P.J.: Growth, motion and one-parameter families of symmetry sets. In: Proc. Royal Soc. Edinburgh, vol. 104A, pp. 179–204 (1986)

    Google Scholar 

  3. Bruce, J.W., Giblin, P.J., Tari, F.: Ridges, crests and sub-parabolic lines of evolving surfaces. Int. J. Computer Vision 18, 195–210 (1996)

    Article  Google Scholar 

  4. Diatta, A., Giblin, P.J.: Vertices and inflexions of plane sections of surfaces in ℝ3’. In: Real and Complex Singularities 2004. LMS Lecture Notes in Maths, Cambridge University Press, Cambridge (2004) (to appear), http://www.liv.ac.uk/~pjgiblin

    Google Scholar 

  5. Diatta, A., Giblin, P.J.: Geometry of isophote curves. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 50–61. Springer, Heidelberg (2005), Available from http://www.liv.ac.uk/~pjgiblin

    Chapter  Google Scholar 

  6. Giblin, P.J.: Symmetry sets and medial axes in two and three dimensions. In: Cipolla, R., Martin, R. (eds.) The Mathematics of Surfaces IX, pp. 306–321. Springer, Heidelberg (2000)

    Google Scholar 

  7. Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)

    Google Scholar 

  8. Morris, R.J.: Liverpool Surface Modelling Package, http://www.amsta.leeds.ac.uk/~rjm/lsmp/ ; See also Morris, R.J.: The use of computer graphics for solving problems in singularity theory. In: Hege, H.-C., Polthier, K. (eds.) Visualization in Mathematics, pp. 173–187. Springer, Heidelberg (1997), http://www.scs.leeds.ac.uk/pfaf/lsmp/SingSurf.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diatta, A., Giblin, P., Guilfoyle, B., Klingenberg, W. (2005). Level Sets of Functions and Symmetry Sets of Surface Sections. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537908_9

Download citation

  • DOI: https://doi.org/10.1007/11537908_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28225-9

  • Online ISBN: 978-3-540-31835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics