Skip to main content

Sequential Stratified Sampling Belief Propagation for Multiple Targets Tracking

  • Conference paper
Advances in Intelligent Computing (ICIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3644))

Included in the following conference series:

  • 4593 Accesses

Abstract

In this paper, we model occlusion and appearance/disappearance in multi-target tracking in video by three coupled Markov random fields that model the following: a field for joint states of multi-target, one binary process for existence of individual target, and another binary process for occlusion of dual adjacent targets. By introducing two robust functions, we eliminate the two binary processes, and then apply a novel version of belief propagation called sequential stratified sampling belief propagation algorithm to obtain the maximum a posteriori (MAP) estimation in the resulted dynamic Markov network. By using stratified sampler, we incorporate bottom-up information provided by a learned detector (e.g. SVM classifier) and belief information for the messages updating. Other low-level visual cues (e.g. color and shape) can be easily incorporated in our multi-target tracking model to obtain better tracking results. Experimental results suggest that our methods are comparable to the state-of-the-art multiple targets tracking methods in several test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Shalom, Y., Li, X.R.: Multitarget Multisensor Tracking:Principles and Techniques. YBS Publishing (1995)

    Google Scholar 

  2. Cox, I.J., Hingorani, S.L.: An Efficient Implementation of Reid’s Multiple Hypotheses Tracking Algorithm and its Evaluation for the Purpose of Visual Tracking. IEEE T-PAMI, 138–150 (1996)

    Google Scholar 

  3. Hue, C., LeCadre, J.P., Perez, P.: Tracking Multiple Objects with Particle Filtering. IEEE Trans. on Aerospace and Electronic Systems 38(3), 791–812 (2002)

    Article  Google Scholar 

  4. Isard, M., MacCormick, J., Bramble, P.: A Bayesian Multiple-blob Tracker. In: Intl. Conf. on Computer Vision, pp. 34–41 (2001)

    Google Scholar 

  5. Tweed, D., et al.: Tracking Objects Using Subordinated Condensation. In: British Machine Vision Conf. (2002)

    Google Scholar 

  6. Jaco, V., Arnaud, D., Patrick, P.: Maintaining Multi-Modality through Mixture Tracking. In: Intl. Conf. on Computer Vision (2003)

    Google Scholar 

  7. Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A Boosted Particle filter: Multitarget Detection and Tracking. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Yu, T., Wu, Y.: Collaborative Tracking of Multiple Targets. In: Intl’ Conf. on Computer Vision and Pattern Recognition (2004)

    Google Scholar 

  9. Isard, M.: PAMPAS: Real-valued Graphical Models for Computer Vision. In: Intl’ Conf. on Computer Vision and Pattern Recognition, pp. 613–620 (2003)

    Google Scholar 

  10. Sudderth, E., Ihler, A., Freeman, W., Willsky, A.: Nonparametric Belief Propagation. In: Intl’ Conf. on Computer Vision and Pattern Recognition, pp. 605–612 (2003)

    Google Scholar 

  11. Comaniciu, D., Ramesh, V., Meer, P.: Real-time Tracking of Non-rigid Objects Using Mean Shift. In: Proc. Intl’ Conf. on Computer Vision and Pattern Recognition, pp. 142–151 (2000)

    Google Scholar 

  12. MacCormick, J.P., Blake, A.: A probabilistic Exclusion Principle for Tracking Multiple Objects. In: Intl. Conf. on Computer Vision, pp. 572–578 (1999)

    Google Scholar 

  13. Tao, H., Sawhney, H.S., Kumar, R.: A Sampling Algorithm for Tracking Multiple Objects. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, p. 53. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Black, M.J., Rangarajan, A.: On the Unification of Line Processes, Outlier Rejection and Robust statistics with applications in Early vision. Int’l J. Computer Vision 19(1), 57–91 (1996)

    Article  Google Scholar 

  15. Isard, M., Blake, A.: Condensation - conditional Density Propagation for Visual Tracking. Intl. J. of Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  16. Murphy, K., Weiss, Y., Jordan, M.: Loopy-belief Propagation for Approximate Inference: An Empirical Study. In: Proc. Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xue, J., Zheng, N., Zhong, X. (2005). Sequential Stratified Sampling Belief Propagation for Multiple Targets Tracking. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538059_35

Download citation

  • DOI: https://doi.org/10.1007/11538059_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28226-6

  • Online ISBN: 978-3-540-31902-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics