Skip to main content

Image Registration Based on Pseudo-Polar FFT and Analytical Fourier-Mellin Transform

  • Conference paper
Advances in Intelligent Computing (ICIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3644))

Included in the following conference series:

  • 4706 Accesses

Abstract

This paper proposes a novel registration algorithm based on Pseudo-Polar Fast Fourier Transform (FFT) and Analytical Fourier-Mellin Transform (AFMT) for the alignment of images differing in translation, rotation angle, and uniform scale factor. The proposed algorithm employs the AFMT of the Fourier magnitude to determine all the geometric transformation parameters with its property of the invariance to translation and rotation. Besides, the proposed algorithm adopt a fast high accuracy conversion from Cartesian to polar coordinates based on the pseudo-polar FFT and the conversion from the pseudo-polar to the polar grid, which involves only 1D interpolations, and obtain a more significant improvement in accuracy than the conventional method using cross-correlation. Experiments show that the algorithm is accurate and robust regardless of white noise.

This work was supported by the foundation of science and technology development of Jilin Province, China under Grant 20040531.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anuta, P.E.: Spatial Registration of Multispectral and Multitemporal Digital Imagery Using Fast Fourier Transform Techniques. IEEE Trans. Geo. Elec. 8, 353–368 (1970)

    Article  Google Scholar 

  2. Casasent, D., Psaltis, D.: Position, Rotation, and Scale Invariant Optical Correlation. Applied Optics 15, 1795–1799 (1976)

    Article  Google Scholar 

  3. Casasent, D., Psaltis, D.: Space-Bandwidth Product and Accuracy of the Optical Mellin Transform. Applied Optics 16, 1472 (1977)

    Article  Google Scholar 

  4. Casasent, D., Psaltis, D.: Accuracy and Space Bandwidth in Space Variant Optical Correlators. Optics Comm. 23, 209–212 (1977)

    Article  Google Scholar 

  5. Casasent, D., Psaltis, D.: Deformation Invariant, Space-Variant Optical Pattern Recognition. In: Wolf, E. (ed.) Progress in Optics, pp. 290–356. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  6. Aitmann, J., Reitbock, H.J.P.: A Fast Correlation Method for Scale- and Translation-Invariant Pattern Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence 6, 46–57 (1984)

    Article  Google Scholar 

  7. Casasent, D., Psaltis, D.: Scale Invariant Optical Transform. Optical Engineering 15(3), 258–261 (1976)

    Google Scholar 

  8. Yatagay, T., Choji, K., Saito, H.: Pattern Classification Using Optical Mellin Transform and Circular Photodiode Array. Optical Communication 38(3), 162–165 (1981)

    Article  Google Scholar 

  9. Zwicke, P.E., Kiss, Z.: A New Implementation of the Mellin Transform and Its Application to Radar Classification. IEEE Trans. on Pattern Analysis and Machine Intelligence 5(2), 191–199 (1983)

    Article  Google Scholar 

  10. Ghorbel, F.: A Complete Invariant Description for Gray-Level Images by the Harmonic Analysis Approach. Pattern Recognition Letters 15, 1043–1051 (1994)

    Article  Google Scholar 

  11. Averbuch, A., Shkolnisky, Y.: The 3D Discrete Radon Transform. Applied Computational Harmonic Analysis 15(1), 33–69 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Averbuch, A., Shkolnisky, Y.: 3D Discrete X-Ray Transform. In: SIAM Conf. on Imaging Science 2004, Salt Lake City, Utah, USA, pp. 3–5 (2004)

    Google Scholar 

  13. Goh, S.: The Mellin Transformation: Theory and Digital Filter Implementation. Ph.D. dissertation, Purdue University, West Lafayette, I.N. (1985)

    Google Scholar 

  14. DeCastro, E., Morandi, C.: Registration of Translated and Rotated Images Using Finite Fourier Transforms. IEEE Trans. on Pattern Analysis and Machine Intelligence 9(5), 700–703 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, X., Xu, Z., Lu, Y., Liu, Z., Pang, Y. (2005). Image Registration Based on Pseudo-Polar FFT and Analytical Fourier-Mellin Transform. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538059_4

Download citation

  • DOI: https://doi.org/10.1007/11538059_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28226-6

  • Online ISBN: 978-3-540-31902-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics