Skip to main content

Learning TAN from Incomplete Data

  • Conference paper
Advances in Intelligent Computing (ICIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3644))

Included in the following conference series:

Abstract

Tree augmented Naive Bayes (TAN) classifier is a good tradeoff between the model complexity and learnability in practice. Since there are few complete datasets in real world, in this paper, we develop research on how to efficiently learn TAN from incomplete data. We first present an efficient method that could estimate conditional Mutual Information directly from incomplete data. And then we extend basic TAN learning algorithm to incomplete data using our conditional Mutual Information estimation method. Finally, we carry out experiments to evaluate the extended TAN and compare it with basic TAN. The experimental results show that the accuracy of the extended TAN is much higher than that of basic TAN on most of the incomplete datasets. Despite more time consumption of the extended TAN compared with basic TAN, it is still acceptable. Our conditional Mutual Information estimation method can be easily combined with other techniques to improve TAN further.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, J., Greiner, R., Liu, W.: Comparing Bayesian network classifiers. In: Fifth Conf. on Uncertainty in Artificial Intelligence, pp. 101–107 (1999)

    Google Scholar 

  2. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14, 462–467 (1968)

    Article  MATH  Google Scholar 

  3. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29, 103–130 (1997)

    Article  MATH  Google Scholar 

  4. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Machine Learning 29, 131–161 (1997)

    Article  MATH  Google Scholar 

  5. Friedman, N., Goldszmidt, M.: Building classifiers using Bayesian networks. In: AAAI/IAAI, vol. 2, pp. 1277–1284 (1996)

    Google Scholar 

  6. Gyllenberg, M., Carlsson, J., Koski, T.: Bayesian network classification of binarized DNA fingerprinting patterns. In: Capasso, V. (ed.) Mathematical Modeling and Computing in Biology and Medicine, Progetto Leonardo, Bologna, pp. 60–66 (2003)

    Google Scholar 

  7. Karieauskas, G.: Text categorization using hierarchical Bayesian network classifiers (2002), http://citeseer.ist.psu.edu/karieauskas02text.html

  8. Kohavi, R., Becker, B., Sommerfield, D.: Improving simple Bayes. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 78–87. Springer, Heidelberg (1997)

    Google Scholar 

  9. Kononenko, I.: Semi-naive Bayesian classifier. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482, pp. 206–219. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  10. Langley, P., Iba, W., Thompson, K.: An analysis of Bayesian classifiers. In: Proceedings of AAAI 1992, pp. 223–228 (1992)

    Google Scholar 

  11. Pazzani, M.J.: Searching for dependencies in Bayesian classifiers. Learning from Data: Artificial intelligence And Statistics V, pp. 239–248. Springer, New York (1996)

    Google Scholar 

  12. Pham, H.V., Arnold, M.W., Smeulders, W.M.: Face detection by aggregated Bayesian network classifiers. Pattern Recognition Letters 23, 451–461 (2002)

    Article  MATH  Google Scholar 

  13. Ramoni, M., Sebastiani, P.: Robust Bayes classifiers. Artificial Intelligence 125, 209–226 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Singh, M.: Learning Bayesian networks from incomplete data. In: The 14th National Conf. on Artificial Intelligence, pp. 27–31 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tian, F., Wang, Z., Yu, J., Huang, H. (2005). Learning TAN from Incomplete Data. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538059_52

Download citation

  • DOI: https://doi.org/10.1007/11538059_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28226-6

  • Online ISBN: 978-3-540-31902-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics