Skip to main content

Radar Emitter Signal Recognition Based on Feature Selection and Support Vector Machines

  • Conference paper
Advances in Intelligent Computing (ICIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3644))

Included in the following conference series:

Abstract

One of the intelligent aspects of human beings in pattern recognition is that man identifies an object in real world using Marked Characteristic Principle (MCP). This paper proposes a humanoid recognition method for radar emitter signals. The main points of the method include feature ordering and an improved one-versus-rest multiclass classification support vector machines. According to MCP, an approach for computing marked characteristic coefficients is presented to obtain the most marked feature of every radar emitter signal. Subsequently, a support vector network is designed using the improved one-versus-rest combination approach of several binary support vector machines. Experimental results show that the introduced method has faster recognition speed and better classification capability than conventional recognition approaches.

This work was supported by the National EW Laboratory Foundation (No.NEWL51435 QT220401).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schroer, R.: Electronic Warfare. IEEE Aerospace Electronic Systems Magazine 18(7), 49–54 (2003)

    Article  Google Scholar 

  2. Zhang, G.X., Hu, L.Z., Jin, W.D.: Resemblance Coefficient Based Intrapulse Feature Extraction Approach for Radar Emitter Signals. Chinese Journal of Electronics 14(2), 337–341 (2005)

    Google Scholar 

  3. Zhang, G.X., Hu, L.Z., Jin, W.D.: Intra-pulse Feature Analysis of Radar Emitter Signals. Journal of Infrared and Millimeter Waves 23(6), 477–480 (2004)

    Google Scholar 

  4. Granger, E., Rubin, M.A., Grossberg, S., Lavoie, P.: A What-and-Where Fusion Neural Network for Recognition and Tracking of Multiple Radar Emitters. Neural Networks 14(3), 325–344 (2001)

    Article  Google Scholar 

  5. Langley, L.E.: Specific Emitter Identification (SEI) and Classical Parameter Fusion Technology. In: Proceedings of the WESCON, pp. 377–381 (1993)

    Google Scholar 

  6. Shieh, C.S., Lin, C.T.: A Vector Network for Emitter Identification. IEEE Transaction on Antennas and Propagation 50(8), 1120–1127 (2002)

    Article  Google Scholar 

  7. Liu, W.K., Zhu, D.J., Zhang, C.H.: The Extraction of Modulation Characteristics of Radar Signal Using Wavelet Transform. In: Proceedings of the 4th International Conference on Signal Processing, pp. 288–291 (1998)

    Google Scholar 

  8. Dudczyk, J., Matuszewski, J., Wnuk, M.: Applying the Radiated Emission to the Specific Emitter Identification. In: Proceedings of 15th International Conference on Microwaves, Radar and Wireless Communications, vol. 2, pp. 431–434 (2004)

    Google Scholar 

  9. Jin, F., Fan, J.B.: A Humanoid Intelligent System for High-speed Recognitions. In: Proceedings of International Conference on Intelligent Information Processing and System, pp. 412–414 (1992)

    Google Scholar 

  10. Jin, F.: Intelligent Foundation of Neural Computing: Principles & Methods. Southwest Jiaotong University Press, Chengdu (2000)

    Google Scholar 

  11. Ren, L.Y., Lu, X.L.: Study and Implementation of BP Network Based on Serial-parallel Computing Topology. Journal of UEST of China 29(2), 197–200 (2000)

    Google Scholar 

  12. Shieh, C.S., Lin, C.T.: A Vector Network for Emitter Identification. IEEE Transaction on Antennas and Propagation 50(8), 1120–1127 (2002)

    Article  Google Scholar 

  13. Zhang, G.X., Hu, L.Z., Jin, W.D.: Radar Emitter Signal Recognition Based on Feature Selection Algorithm. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 1108–1114. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Bian, Z.Q., Zhang, X.G.: Pattern Recognition, 2nd edn. Tsinghua University Press, Beijing (2000)

    Google Scholar 

  15. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  16. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. In: Translated by Li, G.Z., Wang, M., Zeng, H.J. (eds.). Publishing House of Electronics Industry, Beijing (2004)

    Google Scholar 

  17. Dibike, Y.B., Velickov, S., Solomatine, D.: Support Vector Machines: Review and Applications in Civil Engineering. In: Proceedings of the 2nd Joint Workshop on Application of AI in Civil Engineering, pp. 215–218 (2000)

    Google Scholar 

  18. Osareh, A., Mirmehdi, M., Thomas, B., Markham, R.: Comparative Exudate Classification Using Support Vector Machines and Neural Networks. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 413–420. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Foody, G.M., Mathur, A.: A Relative Evaluation of Multiclass Image Classification by Support Vector Machines. IEEE Transactions on Geoscience and Remote Sensing 42(6), 1335–1343 (2004)

    Article  Google Scholar 

  20. Ma, J.S., Theiler, J., Perkins, S.: Accurate On-line Support Vector Regression. Neural Computation 15(11), 2683–2703 (2003)

    Article  MATH  Google Scholar 

  21. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support Vector Clustering. Journal of Machine Learning Research 2(2), 125–137 (2001)

    Article  Google Scholar 

  22. Kim, K.J.: Financial Time Series Forecasting Using Support Vector Machines. Neuro-Computing 55(1), 307–319 (2003)

    Google Scholar 

  23. Hsu, C.W., Lin, C.J.: A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transaction on Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  24. Rifkin, R., Klautau, A.: In Defence of One-Vs-All Classification. Journal of Machine Learning Research 5(1), 101–141 (2004)

    MathSciNet  Google Scholar 

  25. Zhang, G.X., Hu, L.Z., Jin, W.D.: Quantum Computing Based Machine Learning Method and Its Application in Radar Emitter Signal Recognition. In: Torra, V., Narukawa, Y. (eds.) MDAI 2004. LNCS (LNAI), vol. 3131, pp. 92–103. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Zhang, G.X., Rong, H.N., Hu, L.Z., Jin, W.D.: Entropy Feature Extraction Approach of Radar Emitter Signals. In: Proceedings of International Conference on Intelligent Mechatronics and Automation, pp. 621–625 (2004)

    Google Scholar 

  27. Zhang, G.X., Jin, W.D., Hu, L.Z.: Application of Wavelet Packet Transform to Signal Recognition. In: Proceedings of International Conference on Intelligent Mechatronics and Automation, pp. 542–547 (2004)

    Google Scholar 

  28. Zhang, G.X., Jin, W.D., Hu, L.Z.: A Novel Feature Selection Approach and Its Application. In: Zhang, J., He, J.-H., Fu, Y. (eds.) CIS 2004. LNCS, vol. 3314, pp. 665–671. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  29. Zhang, G.X., Jin, W.D., Hu, L.Z.: Resemblance Coefficient and a Quantum Genetic Algorithm for Feature Selection. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 155–168. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, G., Cao, Z., Gu, Y., Jin, W., Hu, L. (2005). Radar Emitter Signal Recognition Based on Feature Selection and Support Vector Machines. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538059_74

Download citation

  • DOI: https://doi.org/10.1007/11538059_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28226-6

  • Online ISBN: 978-3-540-31902-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics