Skip to main content

An Enhanced Massively Multi-agent System for Discovering HIV Population Dynamics

  • Conference paper
Advances in Intelligent Computing (ICIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3645))

Included in the following conference series:

  • 1109 Accesses

Abstract

In this paper, we present an enhanced massively multi-agent system based on the previous MMAS for discovering the unique dynamics of HIV infection [1]. The enhanced MMAS keeps the spacial characteristics of cellular automata (CA), and employs mathematical equations within sites. Furthermore, new features are incorporated into the model, such as the sequence representation of HIV genome, immune memory and agent remote diffusion among sites. The enhanced model is closer to the reality and the simulation captures two extreme time scales in the typical three stages dynamics of HIV infection, which make the model more convincing. The simulation also reveals two phase-transitions in the dynamics of the size of immune memory, and indicates that the high mutation rate of HIV is the fatal factor with which HIV destroys the immune system eventually. The enhanced MMAS provides a good tool to study HIV drug therapy for its characterizing the process of HIV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, S., Liu, J.: A Massively Multi-agent System for Discovering HIV-immune Interaction Dynamics. In: Ishida, T., Gasser, L., Nakashima, H. (eds.) MMAS 2005. LNCS (LNAI), vol. 3446, pp. 161–173. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Young, J.A.T.: The Replication Cycle of HIV-1. HIV InSite Knowledge Base Chapter (1997), http://hivinsite.ucsf.edu/InSite.jsp?page=kb-02&doc=kb-02-01-01

  3. Hope, T.J., Md, D.T.: Structure, Expression, and Regulation of the HIV Genome. HIV InSite Knowledge Base Chapter (2000), http://hivinsite.ucsf.edu/InSite.jsp?page=kb-02&doc=kb-02-01-02

  4. Pandey, R.B.: A Stochastic Cellular Automata Approach to Cellular Dynamics for HIV: effect of viral mutation. Theory in Bioscience 117, 32 (1998)

    Google Scholar 

  5. Mannion, R., Ruskin, H., Pandey, R.B.: Effect of Mutation on Helper T-cells and Viral Population: A Computer Simulation Model for HIV. Theory in Bioscience 119, 10 (2000)

    Google Scholar 

  6. Mannion, R., Ruskin, H., Pandey, R.B.: A Monte Carlo Approach to Population Dynamics of Cell in an HIV Immune Response Model. Theory in Bioscience 119, 94 (2000)

    Google Scholar 

  7. Mielke, A., Pandey, R.B.: A Computer Simulation Study of Cell Population in a Fuzzy Interaction model for Mutating HIV. Physica A 251, 430 (1998)

    Article  Google Scholar 

  8. Pandey, R.B., Mannion, R., Ruskin, H.: Effect of Cellular Mobility on Immune Response. Physica A 283, 447 (2000)

    Article  Google Scholar 

  9. Santos, R., Coutinho, S.: On the Dynamics of the Evolution of HIV Infection (2000), http://arxiv.org/abs/cond-mat/0008081

  10. Santos, R., Countinho, S.: Dynamics of HIV infection: a cellular automata approach. Physical Review Letters 16, 0168102 (2001)

    Article  Google Scholar 

  11. Hershberg, U., Louzoun, Y., Atlan, H., Solomon, S.: HIV Time Hierarchy: Winning the War while, Loosing all the Battles. Physica A 289, 178–190 (2000)

    Article  MathSciNet  Google Scholar 

  12. Kamp, C., Bornholdt, S.: From HIV infection to AIDS: A Dynamically Induced Percolation Transition? Proc. R. Soc. London B 269, 2035 (2002)

    Article  Google Scholar 

  13. Kamp, C., Bornholdt, S.: Co-evolution of Quasispecies: B-cell Mutation Rates Maximize Viral Error Catastrophes. Physical Review Letters 88, 068104 (2002)

    Article  Google Scholar 

  14. Kirschner, D.E.: Using Mathematics to Understand HIV Immune Dynamics. Notices of the American Mathematical Society, 191–202 (1996)

    Google Scholar 

  15. Kirschner, D.E., Mehr, R., Perelson, A.S.: Role of the Thymus in Pediatric HIV-1 Infection. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology 18, 95–109 (1998)

    Google Scholar 

  16. Kirschner, D.E., Webb, G.F.: A Mathematical Model of Combined Drug Therapy of HIV Infection. Journal of Theoretical Medicine 1, 25–34 (1997)

    Article  MATH  Google Scholar 

  17. Hraba, T., Dolezal, J.: A Mathematical Model and CD4+ Lymphocyte Dynamics in HIV Infection. Emerging Infectious Diseases 2(4), 301–305 (1996)

    Article  Google Scholar 

  18. Manrubia, S.C., Delgado, J., Luque, B.: Small-world Behavior in a System of Mobile Elements. Europhysics Letters 53, 693–699 (2001)

    Article  Google Scholar 

  19. Sloot, P., Chen, F., Boucher, C.: Cellular Automata Model of Drug Therapy for HIV Infection. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 282–293. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, S., Yang, J., Wu, Y., Liu, J. (2005). An Enhanced Massively Multi-agent System for Discovering HIV Population Dynamics. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538356_102

Download citation

  • DOI: https://doi.org/10.1007/11538356_102

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28227-3

  • Online ISBN: 978-3-540-31907-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics