Abstract
In this paper, a new eye detection method is presented. The method consists of three steps: (1) extraction of binary edge image (BEI) based on the multi-resolution analysis of wavelet transform; (2) extraction of eye region and segments from BEI, and (3) eye localization using light dot or intensity information. An improved face region extraction algorithm and a light dot detection method are proposed to improve eye detection performance. Experimental results show that our approach can achieve a correct eye detection rate of 98.7% on 150 Bern images with variations in view and gaze direction and a rate of 96.6% on 564 AR images with different facial expressions and lighting conditions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chellappa, R., Wilson, C.L., Sirohey, S.: Human and machine recognition of faces: A survey. Proc. IEEE 83(5), 705–741 (1995)
Zhao, Z.Q., Huang, D.S., Sun, B.-Y.: Human face recognition based on multiple features using neural networks committee. Pattern Recognition Letters 25(12), 1351–1358 (2004)
Guo, L., Huang, D.S.: Human face recognition based on Radial basis probabilistic neural network. In: Int. Joint Conf on Neural Networks (IJCNN 2003), Portland, Oregon, July 20-24, pp. 2208–2211 (2003)
Yang, M.-H., Kriegman, D.J., Ahuja, N.: Detecting faces in images: A survey. IEEE Trans. on PAMI 24(1), 34–58 (2002)
Phillips, P.J., Moon, H., Rizvi, S.A., et al.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. on PAMI 22(10), 1090–1104 (2000)
Yuille, A.L., Hallinan, P.W., Cohen, D.S.: Feature extraction from faces using deformable template. Int. J. Computer Vision 8(2), 99–111 (1992)
Pentland, A., Moghanddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: IEEE conference on CVPR, Seattle, June 1994, pp. 84–91 (1994)
Bruneli, R., Poggio, T.: Face Recognition: features versus templates. IEEE Trans. on PAMI. 15(10), 1042–1052 (1993)
Beymer, D.J.: Face recognition under varying pose. In: Proc. of IEEE conference on CVPR, Seattle, June 1994, pp. 756–761 (1994)
Chow, G., Li, X.: Towards a system for automatic facial feature detection. Pattern Recognition 26(12), 1739–1755 (1993)
Kawaguchi, T., Rizon, M.: Iris detection using intensity and edge information. Pattern Recognition 36(2), 549–562 (2003)
Achermann, B.:The face database of University of Bern, Institute of Computer science and Application Mathematics, University of Bern, Switzerland (1995), http://iamwww.unibe.ch/~fkiwww/staff/achermann.html
Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical Report #24 (June 1998)
Song, J., Chi, Z., Liu, J., Fu, H.: Extraction of Face Image Edges with Application to Expression Analysis. In: Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision (ICARCV), Kunming, China, December 2004, pp. 804–809 (2004)
Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust Face detection using the Hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)
Zhu, Z., Fujimura, K., Ji, Q.: Real-time eye detection and tracking under various light conditions, http://www.ecse.rpi.edu/homepages/qji/papers/Acmpaper.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Song, J., Chi, Z., Wang, Z., Wang, W. (2005). Locating Human Eyes Using Edge and Intensity Information. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538356_51
Download citation
DOI: https://doi.org/10.1007/11538356_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28227-3
Online ISBN: 978-3-540-31907-8
eBook Packages: Computer ScienceComputer Science (R0)