Skip to main content

A DNA Based Evolutionary Algorithm for the Minimal Set Cover Problem

  • Conference paper
Advances in Intelligent Computing (ICIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3645))

Included in the following conference series:

  • 1117 Accesses

Abstract

With the birth of DNA computing, Paun et al. proposed an elegant algorithm to this problem based on the sticky model proposed by Roweis. However, the drawback of this algorithm is that the “exponential curse” is hard to overcome, and therefore its application to large instance is limited. In this s paper, we present a DNA based evolutionary algorithm to solve this problem, which takes advantage of both the massive parallelism and the evolution strategy by traditional EAs. The fitness of individuals is defined as the negative value of their length. Both the crossover and mutation can be implemented in a reshuffle process respectively. We also present a short discussion about population size, mutation probability, crossover probability, and genetic operations over multiple points. In the end, we also present some problems needed to be further considered in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.: Molecular computation of solution to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Hartmanis, J.: On the weight of computations. Bulletin of the European Association for Theoretical Computer Science 55, 136–138 (1995)

    MATH  Google Scholar 

  3. Ogihara, M.: Breadth first search 3-SAT algorithms for DNA computers. Technical Report TR 629, University of Rochester, Department of Computer Science, Rochester (1996)

    Google Scholar 

  4. Bänk, T., Kok, J., Rozenberg, G.: Cross-Fertilization between Evolutionary Computation and DNA-based Computing. In: Proceedings of the IEEE Congress on Evolutionary Computing, pp. 980–987 (1999)

    Google Scholar 

  5. Chen, J., Wood, D.H.: Computation with Biomolecules. PNAS 97, 1328–1330 (2000)

    Article  Google Scholar 

  6. Deaton, R., Murphy, R.C., Rose, J.A., Garzon, M., Franceschetti, D.R., Stevens, S.E.: A DNA based Implementation of an Evolutionary Search for Good Encodings for DNA Computation. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 267–272 (1997)

    Google Scholar 

  7. Wood, D., Bi, H., Kimbrough, S.O., Wu, D., Chen, J.: DNA Starts to Learn Poker. In: Proceedings of the 7th International Meeting on DNA-based Computers, pp. 23–32 (2001)

    Google Scholar 

  8. Rose, J.A., Hagiya, M., Deaton, R., Suyama, A.: A DNA-based in vitro Genetic Program. Journal of Biological Physics 28, 493–498 (2002)

    Article  Google Scholar 

  9. Paun, G., Rozenberg, G., Salomaa, A.: DNA computing: New Computing Paradigms. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  10. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  11. Dove, A.: From bits to bases: Computing with DNA. Nature Biotechnology 16, 830–832 (1998)

    Article  Google Scholar 

  12. Pool, R.: Forget silicon, try DNA. New Scientist. 151, 26–31 (1996)

    Google Scholar 

  13. Stemmer, W.P.C.: The evolution of molecular computation. Science 270, 1510–1518 (1995)

    Article  Google Scholar 

  14. Head, T., Kaolan, P.D., Bladergroen, R.R.: Computing with DNA by operating on plasmids. Biosystem 57, 87–93 (2000)

    Article  Google Scholar 

  15. Lipton, R.J.: DNA Solution of Hard Computation Problems. Science 268, 542–545 (1995)

    Article  Google Scholar 

  16. Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N., Goodman, M., Rothemund, P., Adleman: A sticker based architecture for DNA computation. Journal Computational Biology 5, 615–629 (1998)

    Article  Google Scholar 

  17. Wood, D., Chen, J.: Physical Separation of DNA According to Royal Road Fitness. In: Proceedings of The IEEE Conference on Evolutionary Computation, Dantsin, Voronkov (1998)

    Google Scholar 

  18. Chen, J., Antipov, E., Lemieux, B., Cedeno, W., Wood, D.H.: A Design for DNA Computation of the OneMax Problem. Soft Computing 5, 19–24 (2001)

    Article  MATH  Google Scholar 

  19. Bäck, T., Kok, J.N., Rozenberg, G.: Evolutionary computation as a paradigm for DNA-based computing. Natural Computing Series, pp. 15–40. Springer, Heidelberg (2003)

    Google Scholar 

  20. Nielsen, P., Egholm, M., Berg, R., Buchardt, O.: Peptide nucleic acid (PNA). Nucleic Acids Research 21, 197–200 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, W., Zhu, X., Xu, G., Zhang, Q., Gao, L. (2005). A DNA Based Evolutionary Algorithm for the Minimal Set Cover Problem. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538356_9

Download citation

  • DOI: https://doi.org/10.1007/11538356_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28227-3

  • Online ISBN: 978-3-540-31907-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics