Skip to main content

Towards a Typed Geometry of Interaction

  • Conference paper
Computer Science Logic (CSL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3634))

Included in the following conference series:

Abstract

Girard’s Geometry of Interaction (GoI) develops a mathematical framework for modelling the dynamics of cut-elimination. We introduce a typed version of GoI, called Multiobject GoI (MGoI) for multiplicative linear logic without units in categories which include previous (untyped) GoI models, as well as models not possible in the original untyped version. The development of MGoI depends on a new theory of partial traces and trace classes, as well as an abstract notion of orthogonality (related to work of Hyland and Schalk) We develop Girard’s original theory of types, data and algorithms in our setting, and show his execution formula to be an invariant of Cut Elimination. We prove Soundness and Completeness Theorems for the MGoI interpretation in partially traced categories with an orthogonality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S.: Retracing Some Paths in Process Algebra. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 1–17. Springer, Heidelberg (1996)

    Google Scholar 

  2. Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored *-categories. J. Pure and Applied Algebra 143, 3–47 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abramsky, S., Haghverdi, E., Scott, P.J.: Geometry of Interaction and Linear Combinatory Algebras. MSCS 12(5), 625–665 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Abramsky, S., Jagadeesan, R.: New Foundations for the Geometry of Interaction. Information and Computation 111(1), 53–119 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baillot, P.: Abramsky-Jagadeesan-Malacaria strategies and the geometry of interaction, mémoire de DEA, Universite Paris 7 (1995)

    Google Scholar 

  6. Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Fundamenta Informaticae 45(1-2) (2001)

    Google Scholar 

  7. Danos, V.: La logique linéaire appliquée à l’étude de divers processus de normalisation et principalement du λ-calcul. PhD thesis, Université Paris VII (1990)

    Google Scholar 

  8. Danos, V., Regnier, L.: Proof-nets and the Hilbert Space. In: Advances in Linear Logic. London Math. Soc. Notes, vol. 222, CUP, pp. 307–328 (1995)

    Google Scholar 

  9. Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: Proceedings of Logic in Computer Science, vol. 9 pp. 15–26 (1992)

    Google Scholar 

  10. Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50(1), 1–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  11. Girard, J.-Y.: Geometry of Interaction II: Deadlock-free Algorithms. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 76–93. Springer, Heidelberg (1990)

    Google Scholar 

  12. Girard, J.-Y.: Geometry of Interaction I: Interpretation of System F. In: Proc. Logic Colloquium 1988, pp. 221–260. North Holland, Amsterdam (1989a)

    Google Scholar 

  13. Girard, J.-Y.: Geometry of Interaction III: Accommodating the Additives. In: Advances in Linear Logic. LNS, vol. 222, CUP, pp. 329–389 (1995)

    Google Scholar 

  14. Girard, J.-Y.: Cours de Logique, Rome (2004) (forthcoming)

    Google Scholar 

  15. Haghverdi, E.: A Categorical Approach to Linear Logic, Geometry of Proofs and Full Completeness, PhD Thesis, University of Ottawa, Canada (2000)

    Google Scholar 

  16. Haghverdi, E.: Unique Decomposition Categories, Geometry of Interaction and combinatory logic. Math. Struct. in Comp. Science 10, 205–231 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Haghverdi, E., Scott, P.J.: A categorical model for the Geometry of Interaction. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 708–720. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Haghverdi, E., Scott, P.J.: From Geometry of Interaction to Denotational Semantics. In: Proceedings of CTCS 2004. ENTCS, vol. 122, pp. 67–87. Elsevier, Amsterdam (2004)

    Google Scholar 

  19. Hasegawa, M.: Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of Cyclic Lambda Calculus. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997)

    Google Scholar 

  20. Hines, P.: A categorical framework for finite state machines. Math. Struct. in Comp. Science 13, 451–480 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hyland, M., Schalk, A.: Glueing and Orthogonality for Models of Linear Logic. Theoretical Computer Science 294, 183–231 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jeffrey, A.S.A.: Premonoidal categories and a graphical view of programs (1998), See the webpage http://klee.cs.depaul.edu/premon/ Also: Electr. Notes Theor. Comput. Sci. 10 (1997)

  23. Joyal, A., Street, R., Verity, D.: Traced Monoidal Categories. Math. Proc. Camb. Phil. Soc. 119, 447–468 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Laurent, O.: A Token Machine for Full Geometry of Interaction. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 283–297. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  26. Malacaria, P., Regnier, L.: Some Results on the Interpretation of λ- calculus in Operator Algebras. In: Proc. LICS, pp. 63–72. IEEE Press, Los Alamitos (1991)

    Google Scholar 

  27. Plotkin, G.: Trace Ideals, MFPS, invited lecture, Montreal (2003)

    Google Scholar 

  28. Regnier, L.: Lambda-calcul et Réseaux, PhD Thesis, Université Paris VII (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haghverdi, E., Scott, P.J. (2005). Towards a Typed Geometry of Interaction. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_16

Download citation

  • DOI: https://doi.org/10.1007/11538363_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28231-0

  • Online ISBN: 978-3-540-31897-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics