Abstract
We show that the modular decomposition of a countable graph can be defined from this graph, given with an enumeration of its set of vertices, by formulas of Monadic Second-Order logic. A second main result is the definition of a representation of modular decompositions by a low degree relational structures, also constructible by Monadic Second-Order formulas.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barthelmann, K.: When can an equational simple graph be generated by hyperedge replacement? In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 543–552. Springer, Heidelberg (1995)
Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata and interpretations. Theory of Computing Systems 37, 641–674 (2004)
Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer Science 106, 61–86 (1992)
Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Science 25, 95–169 (1983)
Courcelle, B.: Recursive applicative program schemes. In: Van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 459–492. Elsevier, Amsterdam (1990)
Courcelle, B.: Monadic second-order graph transductions: A survey. Theoretical Computer Science 126, 53–75 (1994)
Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of graph grammars and computing by graph transformations. Foundations, vol. 1, pp. 313–400. World Scientific, Singapore (1997)
Courcelle, B.: The monadic second-order logic of graphs X: Linear orderings. Theoretical Computer Science 160, 87–143 (1996)
Courcelle, B.: The monadic second-order logic of graphs XIV: Uniformly sparse graphs and edge set quantifications. Theoretical Computer Science 299, 1–36 (2003)
Courcelle, B.: The monadic second-order logic of graphs XV: On a Conjecture by D. Seese. To appear in Journal of Applied Logic, see http://www.labri.fr/~courcell/ActSci.html
Courcelle, B., Delhommé, C.: The modular decomposition of countable graphs (2005), see http://www.labri.fr/~courcell/ActSci.html
Ehrenfeucht, A., Harju, T., Rozenberg, G.: Decomposition of infinite labeled 2- structures. In: Karhumäki, J., Rozenberg, G., Maurer, H.A. (eds.) Results and Trends in Theoretical Computer Science. LNCS, vol. 812, pp. 145–158. Springer, Heidelberg (1994)
Ehrenfeucht, A., Harju, T., Rozenberg, G.: The theory of 2-structures. In: A framework for decomposition and transformation of graphs, World Scientific Publishing Co., River Edge (1999)
Fraïssé, R.: Theory of relations, 2nd edn. Studies in logic, vol. 118. North-Holland, Amsterdam (1986) (Second edition, Elsevier, 2000)
Kelly, D.: Comparability graphs. In: Rival, I. (ed.) Graphs and order, pp. 3–40. D. Reidel Pub. Co. (1985)
Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)
Möhring, R., Radermacher, R.: Substitution decomposition of discrete structures and connections with combinatorial optimization. Annals Discrete Maths 19, 257–356 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Courcelle, B., Delhommé, C. (2005). The Modular Decomposition of Countable Graphs: Constructions in Monadic Second-Order Logic. In: Ong, L. (eds) Computer Science Logic. CSL 2005. Lecture Notes in Computer Science, vol 3634. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538363_23
Download citation
DOI: https://doi.org/10.1007/11538363_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28231-0
Online ISBN: 978-3-540-31897-2
eBook Packages: Computer ScienceComputer Science (R0)