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Abstract. A semantic formulation of Lindley and Stark’s>>-lifting is given.
We first illustrate our semantic formulation of the>>-lifting in Set with sev-
eral examples, and apply it to the logical predicates for Moggi’s computational
metalanguage. We then abstract the semantic>>-lifting as the lifting of strong
monads across bifibrations with lifted symmetric monoidal closed structures.

1 Introduction

Logical predicates are a method for extracting submodels of the pure simply typed
lambda calculus (λ⇒ for short) by induction on type. Logical predicates are widely
applied to the reasoning of the properties ofλ⇒ [23, 9, 24, 16].

We are interested in extending logical predicates toMoggi’s computational meta-
language(λml for short) [18], which has additional typesTτ calledmonadic type. To
do so, we need to consider a scheme to calculate a predicate at typeTτ from a predicate
at typeτ . Recently, Lindley and Stark develop theleapfrog methodand show the strong
normalisation ofλml in the style of Tait-Girard reducibility [12, 11]. The novelty of
the leapfrog method is the operation called>>-lifting, which calculates a reducibility
predicate at typeTτ from a reducibility predicate at typeτ .

However, Lindley and Stark’s>>-lifting is defined with respect to the syntactic
structure ofλml, and is designed for the proof of the strong normalisation. This paper
attempts to provide a semantic aspect of their>>-lifting. The main contribution of this
paper is twofolds:

1. We provide a semantic formulation of Lindley and Stark’s>>-lifting in set theory
(section 3). This formulation is carried out by finding a semantic counterpart for
each of the building block in>>-lifting. We instanciate>>-liftings with well-
known strong monads overSet, and show that the logical predicates using the
semantic>>-lifting implies thebasic lemmaof logical predicates.

2. We re-formulate the above semantic>>-lifting as a construction ofliftings of
strong monads, and give a categorical account of this construction within the frame-
work of fibred category theory (section 4). We then show that the above semantic
>>-lifting and Abadi’s>>-closure operation are instances of>>-lifting.



2 Preliminaries

Moggi’s Computational Metalanguage

We begin with the syntax ofλml. We define the set of typesTypml by the following
BNF (we consider a single base typeb for simplicity):

Typml 3 τ ::= b | τ ⇒ τ | Tτ.

Monadic typesTτ are for the programs yielding values of typeτ with some com-
putational effect. Atyping context(ranged over byΓ ) is simply a finite sequence of
variable-type pairs without any duplication of variables.

The calculusλml has two new term constructions related to monadic types:[−] and
“ let xτ be M in N ”. Their typing rules are the following:

Γ ` M : τ
Γ ` [M ] : Tτ

Γ ` M : Tτ Γ, x : τ ` N : Tτ ′

Γ ` let xτ be M in N : Tτ ′

The term[M ] expresses the value ofM involving the trivial computational effect. The
term “let xτ be M in N ” expresses a sequential computation ofM andN ; the termM
is first computed, its value is then bound toxτ and next the termN is computed.

Equational theory ofλml extendsβη axioms ofλ⇒ with the following axioms:

let xτ be [M ] in N = N [M/x] (T.β)
let xτ be M in [xτ ] = M (T.η)

let xτ be (let yτ ′ be L in M) in N = let yτ ′ be L in let xτ be M in N (T.assoc)

Categorical Semantics ofλml

A categorical semantics ofλml is given in a Cartesian closed categoryC equipped with
a strong monadT = (T, η, µ, θ). We omit the formal definition of strong monads;
see e.g. [18]. For a morphismf : A → TB in C, we write f# for the morphism
µB ◦ Tf : TA → TB.

Let B be an object inC. We first assign to each typeτ an object[[τ ]] in C by
induction on type:

[[b]] = B, [[τ ⇒ τ ′]] = [[τ ]] ⇒ [[τ ′]], [[Tτ ]] = T [[τ ]].

We extend this assignment to typing contexts by

[[x1 : τ1, · · · , xn : τn]] = [[τ1]]× · · · × [[τn]].

The semantics ofλml in C is an extension of the standard categorical semantics ofλ⇒

with the following rules:

– For a well-formed termΓ ` [M ] : Tτ , we define

[[[M ]]] = η[[τ ]] ◦ [[M ]].

– For a well-formed termΓ ` let xτ be M in N : Tτ ′, we define

[[let xτ be M in N ]] = [[N ]]# ◦ θ[[Γ ]],[[τ ]] ◦ 〈id[[Γ ]], [[M ]]〉



3 A Semantic Formulation of>>-lifting

In [12], Lindley and Stark prove the strong normalisation ofλml by extending the
reducibility predicate technique. The novelty of their method is the operation called
>>-lifting, which calculates a reducibility predicate at a monadic type from that at an
ordinary type.

Definition 3.1 ([12], section 3.1).

1. We define the set ofraw continuationsby the following BNF:

K ::= Id | K ◦ (xτ .N)

where the notation(xτ .N) indicates thatN is a term with a distinguished free
variablexτ .
A judgement for a raw continuation is a tripleTτ `C K : Tτ ′. Raw continuations
are typed by the following rules:

Tτ `C Id : Tτ

x : τ ` N : Tτ ′ Tτ ′ `C K : Tτ ′′

Tτ `C K ◦ (xτ .N) : Tτ ′′

We writeTτ `C K to mean that there exists a (unique) typeTτ ′ such thatTτ `C

K : Tτ ′ is derived from the above rules.
2. We define anapplicationK@M of a termM to a continuationK by

Id@M = M, (K ◦ (xτ .N))@M = K@(let xτ be M in N).

3. Given a setP of terms of typeτ , we define a setP>> of terms of typeTτ by

P> = {Tτ `C K | ∀M ∈ P . K@[M ] ∈ SN}
P>> = {M : Tτ | ∀K ∈ P> . K@M ∈ SN}

whereSN is the set of strongly normalising terms.

From this point, we letT = (T, η, µ, θ) be a strong monad overSet, and fix a
categorical semantics ofλml with respect to the strong monadT and the evident CCC
structure inSet. We give a semantic formulation of the syntactic>>-lifting by finding
semantic counterparts of continuations, applications and the setSN . This formulation
is carried out with respect to the strong monadT . We introduce the following notation:
for subsetsX ⊆ I andY ⊆ J , byX ⇒̇ Y we mean the subset{f | ∀x ∈ X . f(x) ∈ Y }
of I ⇒ J .

To simplify the situation, we assume that all continuations in definition 3.1 have the
same typeTρ (this restriction will be relaxed in section 5). We letR = [[ρ]].

Continuation We formulate a continuation as a function

f ∈ [[τ ]] ⇒ TR.



We explain the idea of this formulation below. We notice that a continuationTτ `C

Id ◦ (xτ .M) : Tρ is equivalent to a contextlet xτ be − in M , and an application
of a term to the continuation is equivalent to plugging the term in the hole of the
context. The essential information of the context is the bodyM , and it has the
following typing:

x : τ ` M : Tρ.

Our formulation represents this information as a functionf ∈ [[τ ]] ⇒ TR.
Application We define an application of an elementx ∈ [[Tτ ]] to a continuationf ∈

[[τ ]] ⇒ TR to bef#x.
The SetSN The setSN is hard-coded in the definition ofP> andP>> since the

syntactic>>-lifting is designed for the proof of the strong normalisation ofλml.
We replaceSN with some subsetS ⊆ TR, and callS a result predicate.
We also relax the condition that the setR is given by[[ρ]] with some typeρ; we
simply allowR to be any set and callR a result type.

Once continuations, applications and the setSN are semantically formulated, it is
straightforward to defineP> andP>>. We summarise the above discussion as follows:

Definition 3.2. Let R be a set (calledresult type) and S ⊆ TR be a subset (called
result predicate).

1. Acontinuationis a functionf ∈ [[τ ]] ⇒ TR.
2. We define anapplicationof x ∈ [[Tτ ]] to a continuationf ∈ [[τ ]] ⇒ TR to bef#x.
3. LetP ⊆ [[τ ]] be a subset. We define a subsetP>> ⊆ [[Tτ ]] by

P> = {f ∈ [[τ ]] ⇒ TR | ∀x ∈ P . f(x) ∈ S} = P ⇒̇ S

P>> = {x ∈ [[Tτ ]] | ∀f ∈ P> . f#(x) ∈ S},

which is equivalent to

P>> = {x ∈ [[Tτ ]] | ∀f ∈ P ⇒̇ S . f#(x) ∈ S}.

We call the operation(−)>> the>>-lifting of T with R andS ⊆ TR.

We can also consider the semantic>>-lifting for binary relations (binary>>-lifting
for short) over the semantics ofλml. Let R be a set andS ⊆ (TR)2 be a subset. A
continuation is a pair(f, g) of functions from[[τ ]] to TR. An application of(x, y) ∈
[[Tτ ]]2 to a continuation(f, g) is defined to be(f#x, g#y). For a binary relationP ⊆
[[τ ]]2, we defineP>> as follows:

P> = {(f, g) ∈ ([[τ ]] ⇒ TR)2 | ∀(x, y) ∈ P . (fx, gy) ∈ S}
P>> = {(x, y) ∈ [[Tτ ]]2 | ∀(f, g) ∈ P> . (f#x, g#y) ∈ S}.

Examples of Semantic>>-liftings

An interesting point is that we can obtain>>-liftings for various strong monads and
result type/predicate pairs. We see some concrete examples of the semantic>>-lifting
below.



Example 3.3.We consider thelifting monadT⊥, which simply adjoins an extra element
⊥ to a given set. We calculate a>>-lifting of T⊥ with the following data:

– The result typeR is {∗} (thusT⊥R = {∗,⊥}).
– The result predicateS is {∗}.

For a subsetP ⊆ [[τ ]], we haveP>> = P .

Example 3.4.We consider thestate monadTs whose functor part is given byTsI =
M ⇒ I ×M for some setM . We letM0 ⊆ M be a subset and calculate a>>-lifting
of Ts with the following data:

– The result typeR is some set.
– The result predicateS is M0 ⇒̇ R × M0, the set of functionsf ∈ TsR such that
∀x ∈ M0 . f(x) ∈ M0 ×R.

For a subsetP ⊆ [[τ ]], we expand the definition ofP>> and obtain

P>> = {f ∈ Ts[[τ ]] | ∀g ∈ P ×M0 ⇒̇ R×M0 . g ◦ f ∈ M0 ⇒̇ R×M0}.

In fact,P>> can be characterised as follows:

P>> =
{

M0 ⇒̇ P ×M0 (∅ ( R×M0 ( R×M)
Ts[[τ ]] (otherwise)

Below we prove the first case of this characterisation; the second case is trivial. We first
prove

P ×M0 = {i ∈ [[τ ]]×M | ∀g ∈ P ×M0 ⇒̇ R×M0 . g(i) ∈ R×M0}.

(⊆) Easy. (⊇) Let x 6∈ P × M0. From the assumption onR × M0, we can take two
elementss ∈ R × M0 ands′ ∈ (R × M)\(R × M0). We then define the following
functiong ∈ [[τ ]]×M ⇒ R×M :

g(x) =
{

s (x ∈ P ×M0)
s′ (x 6∈ P ×M0)

which is clearly included inP × M0 ⇒̇ R × M0. Howeverg(x) 6∈ R × M0, so we
conclude thatx 6∈ (r.h.s.). Therefore

f ∈ M0 ⇒̇ P ×M0

⇐⇒ ∀x ∈ M0 . ∀g ∈ P ×M0 ⇒̇ R×M0 . g(f(x)) ∈ R×M0

⇐⇒ f ∈ P>>.

Example 3.5.We calculate a binary>>-lifting of the lifting monadT⊥ with the fol-
lowing data:

– The result typeR is a one-point set{∗}. We haveT⊥R = {⊥, ∗}.
– The result predicateS ⊆ (T⊥R)2 is {(x, y) ∈ (T⊥R)2 | (x = ∗ =⇒ y = ∗)}.



For a subsetP ⊆ [[τ ]], we obtainP>> = P ∪ {(⊥,⊥)}.

Example 3.6.We consider thefinite powerset monadTp, whose functor part is given
by Tp(X) = {x ⊆ X | x is a finite set}. We calculate a binary>>-lifting wf Tp with
the following data:

– The result typeR is a one-point set{∗}. We haveTpR = {∅, R}.
– The result predicateS ⊆ (TpR)2 is {(x, y) ∈ (TpR)2 | x = R =⇒ y = R}.

We identify a functionf ∈ [[τ ]] ⇒ TpR and a subset (written with the capital letter of
the function)F = {x ∈ [[τ ]] | f(x) = R} ⊆ [[τ ]]. Under this identification, for each
x ∈ Tp[[τ ]], we have

f#x = R ⇐⇒
⋃
e∈x

fe = R ⇐⇒ ∃e ∈ x . e ∈ F.

For a subsetP ⊆ [[τ ]], we expand the definition ofP>> and obtain

P>> = {(p, q) ∈ (Tp[[τ ]])2 | ∀F,G ⊆ [[τ ]] . (∀(x, y) ∈ P . x ∈ F =⇒ y ∈ G) =⇒
∀e ∈ p . e ∈ F =⇒ ∃e′ ∈ q . e′ ∈ G}.

This is not intuitive, but interestingly we have the following characterisation ofP>>:

P>> = {(p, q) | ∀a ∈ p . ∃b ∈ q . (a, b) ∈ P}. (1)

This appears in the pattern of definingpre-bisimulation relationin concurrency.
The rest of this example is the proof of equation 1. (⊆) Let (p, q) ∈ P>> anda ∈ p.

We show∃b ∈ q . (a, b) ∈ P . We supply{a} and{b | (a, b) ∈ P} to F andG in the
definition of(p, q) ∈ P>>. We obtain

(∀(x, y) ∈ P . x = a =⇒ (a, y) ∈ P})
=⇒ (∀e ∈ p . e = a =⇒ ∃e′ ∈ q . (a, e′) ∈ P})

whose premise part is trivially true. By lettinge be a in the conclusion part of the
above formula, we obtain∃e′ ∈ q . (a, e′) ∈ P . (⊇) We takep, q ∈ Tp[[τ ]] such that
∀a ∈ p . ∃b ∈ q . (a, b) ∈ P . Let F,G ⊆ [[τ ]], e ∈ p and assume∀(x, y) ∈ P . x ∈
F =⇒ y ∈ G (we call this assumption (*)) ande ∈ F . We show∃e′ ∈ q . e′ ∈ G.
Sincee ∈ p, there existse′ ∈ q such that(e, e′) ∈ P . From (*), we havee ∈ F =⇒
e′ ∈ G. Thuse′ gives a witness of∃e′ ∈ q . e′ ∈ G.

Logical Predicates forλml Using>>-lifting

The semantic>>-lifting constructs a subset of[[Tτ ]] from a subset of[[τ ]]. This con-
struction is suitable for extending the concept oflogical predicatestoλml. We show that
a logical predicate using the semantic>>-lifting extract a submodel ofλml. We fix a
result typeR and a result predicateS ⊆ TR, and consider the>>-lifting determined
by R andS.



Definition 3.7. A>>-logical predicateis a type-indexed family{P τ ⊆ [[τ ]]}τ∈Typml

of subsets satisfying

PTτ = (P τ )>>, P τ⇒τ ′ = P τ ⇒̇ P τ ′ .

For a typing contextΓ = x1 : τ1, · · · , xn : τn, byPΓ we mean the productP τ
1 ×· · ·×

P τ
n , which is a subset of[[Γ ]].

Theorem 3.8 (Basic Lemma).LetP be a>>-logical predicate. For any well-formed
termΓ ` M : τ , we have[[M ]] ∈ PΓ ⇒̇ P τ .

Proof. We show the following properties on the>>-lifting. Let X ⊆ I andY ⊆ J be
subsets.

1. ηI ∈ X ⇒̇ X>>. Let x ∈ X. Then for anyf ∈ X ⇒̇ S, we havef#(ηI(x)) =
f(x) ∈ S. ThereforeηI(x) ∈ X>>.

2. µI ∈ (X>>)>> ⇒̇ X>>. Let x ∈ (X>>)>> and f ∈ X ⇒̇ S. We show
f#(µI(x)) ∈ S. It is easy to show thatf ∈ X ⇒̇ S implies f# ∈ X>> ⇒̇ S,
hence(f#)# ∈ (X>>)>> ⇒̇ S. Notice thatf#(µI(x)) = (f#)#(x). Therefore
f#(µI(x)) ∈ S.

3. θI,J ∈ X × Y >> ⇒̇ (X × Y )>>. Let a ∈ X, b ∈ Y >> andf ∈ X × Y ⇒̇ S. We
showf# ◦ θI,J(a, b) ∈ S. We note that the strengthθI,J is given byθI,J(a, b) =
T (λb ∈ B . (a, b))(b) asSet is a well-pointed category (see e.g. [18]). Thusf# ◦
θI,J(a, b) = (λb ∈ B . f(a, b))#(b). Sinceλb ∈ B . f(a, b) ∈ Y ⇒̇ S, for each
b ∈ Y >> we have(λb ∈ B . f(a, b))#(b) ∈ S. Thereforef# ◦ θI,J(a, b) ∈ S

4. f ∈ X ⇒̇ Y impliesTf ∈ X>> ⇒̇ Y >>. Let x ∈ X>> andg ∈ Y ⇒̇ S. We
showg#(Tf(x)) = (g ◦ f)#(x) ∈ S. This holds fromg ◦ f ∈ X ⇒̇ S and the
definition ofx ∈ X>>.

5. From 2 and 4,f ∈ X ⇒̇ Y >> impliesf# ∈ X>> ⇒̇ Y >>.

We prove the theorem by induction on derivation of a well-formed termΓ ` M : τ .
We omit the cases for the syntax constructions inherited fromλ⇒; see e.g. [2]. The
cases new toλml is the following.

– CaseΓ ` [M ] : Tτ . From IH, we have[[M ]] : PΓ ⇒̇ P τ . From 1, we have
[[[M ]]] = η[[τ ]] ◦ [[M ]] : PΓ ⇒̇ PTτ .

– CaseΓ ` let xτ be M in N : Tτ ′ with well-formed termsΓ ` M : Tτ andΓ, x :
τ ` N : Tτ ′. From IH,[[M ]] : PΓ ⇒̇ PTτ and[[N ]] : PΓ×P τ ⇒̇ PTτ ′ . From 3 and
5, we have[[N ]]#◦θ[[Γ ]],[[τ ]] : PΓ ×PTτ ⇒̇ PTτ ′ . Therefore[[let xτ be M in N ]] =
[[N ]]# ◦ θ[[Γ ]],[[τ ]] ◦ 〈id[[Γ ]], [[M ]]〉 : PΓ ⇒̇ PTτ ′ .

ut

4 A Categorical Generalisation of>>-lifting

In the proof of theorem 3.8, we notice that the operation(−)>> resembles an endofunc-
tor (claim 4) equipped with morphisms constituting a strong monad (claim 1,2,3). It is



indeed a strong monad over the categorySub(Set) of subsets and functions respect-
ing subsets (example 4.3). Furthermore, the strong monad(−)>> makes the following
diagram commute:

Sub(Set)
(−)>> //

π

��

Sub(Set)

π

��
Set

T
// Set

whereπ : Sub(Set) → Set is the evident forgetful functor. This suggests that we can
understand the semantic>>-lifting as aconstructionof such a strong monad fromT .

We give a categorical generalisation of this construction using fibrations and sym-
metric monoidal closed structures. We replaceπ with a bifibrationp : E → B equipped
with a lifted symmetric monoidal closed structure (definition 4.2). We then capture the
semantic>>-lifting as a construction of a strong monad overE from that overB.

We borrow some notations from 2-category theory. We use• and∗ for the vertical
and horizontal compositions of natural transformations, respectively. We overload◦
with the notation for the composition of functors, as well as for the composition of a
functor and a natural transformation.

4.1 Preliminaries

Symmetric Monoidal Close Category We assume that the reader is familiar with
symmetric monoidal closed categories. We reserve symbolsI,⊗,( for unit objects,
tensor products and exponentials. Asymmetric monoidal functoris a functorF : C →
D between symmetric monoidal categoriesC, D together with morphismsmI : ID →
F IC andmX,Y : FX ⊗D FY → F (X ⊗C Y ) satisfying certain coherence laws (see
e.g. [14]).

Example 4.1. 1. The categorySet has a symmetric monoidal closed structure given
by a chosen CCC structure.

2. The categoryωCPPO of pointedω-CPOs and strictω-continuous functions has
a symmetric monoidal closed structure given by Sierpinski spaceO = {⊥ v >},
smash products and strictω-continuous function spaces.

3. The functor× : (ωCPPO)2 → Set sending a pair(X, Y ) of pointedω-CPOs to
the binary productX × Y of carrier sets is a symmetric monoidal functor.

Strong Monad A strong monadT over a symmetric monoidal categoryB is a tuple
(T, η, µ, θ) such that(T, η, µ) is an ordinary monad overB andθX,Y : X ⊗ TY →
T (X ⊗ Y ) is a natural transformation calledtensorial strengthsatisfying certain co-
herence laws (see e.g. [10]). Astrong monad morphismfrom T = (T, η, µ, θ) to
T ′ = (T ′, η′, µ′, θ′) is a natural transformationσ : T → T ′ satisfying

µ′ • (σ ∗ σ) = σ • µ, η′ = σ • η, θ′X,Y ◦ (X ⊗ σY ) = σX⊗Y ◦ θX,Y .



Fibration We assume that the reader is familiar with preliminaries on fibration. A good
reference is [7].

Definition 4.2. A functorp : E → B is a bifibration with a lifted symmetric monoidal
closed structureif p is a preordered bifibration,E andB are symmetric monoidal closed
categories andp strictly preserves the symmetric monoidal closed structure inE. We
use dot notatioṅI, ⊗̇ , (̇ to denote the symmetric monoidal closed structure inE
which are sent to the symmetric monoidal closed structureI,⊗,( in B byp.

Example 4.3.We define a categorySub(Set) by the following data: an object is a pair
(X, I) whereX is a subset ofI, and a morphisms from(X, I) to (Y, J) is a function
in X ⇒̇ Y . The categorySub(Set) has the following CCC structure:

1̇ = ({∗}, {∗})
(X, I) ×̇ (Y, J) = ({(i, j) | i ∈ X ∧ j ∈ Y }, I × J)
(X, I) ⇒̇ (Y, J) = (X ⇒̇ Y, I ⇒ J).

(here the reader should not worry about the confusion caused by a clash of the no-
tation ⇒̇ ). This structure is strictly preserved by the evident forgetful functorπ :
Sub(Set) → Set, which is actually a partial-order bifibration. Thereforeπ is a bifi-
bration with a lifted symmetric monoidal closed structure.

One good property of the class of bifibrations with lifted symmetric monoidal closed
structures is the closure under change-of-base along symmetric monoidal functors.

Proposition 4.4 (e.g. [5]).Let p : E → B be a bifibration with a lifted symmetric
monoidal closed structure andF : C → B be a symmetric monoidal functor. Then the
change-of-base ofp along F is again a bifibration with a lifted symmetric monoidal
closed structure.

Example 4.5.We consider the following change-of-base ofπ along×:

Rel(ωCPPO)
_� //

π2

��

Sub(Set)

π

��
(ωCPPO)2 ×

// Set

From proposition 4.4,π2 is again a bifibration with a lifted symmetric monoidal closed
structure. An object inRel(ωCPPO) is a triple(X, I, J) whereI, J are pointedω-
CPOs andX is an arbitrary subset ofI × J , that is, a binary relation betweenI andJ .
A morphism inRel(ωCPPO) from (X, I, J) to (X ′, I ′, J ′) is a pair(f : I → I ′, g :
J → J ′) of strictω-continuous functions such thatf × g ∈ X ⇒̇X ′. We can similarly
derive the category ofn-ary relations betweenω-CPOs by change-of-base.

4.2 >>-lifting as a Construction of Liftings of Strong Monads

We fix a bifibrationp : E → B with a lifted symmetric monoidal closed structure.
We define a fibration oflifted strong monadswhich is suitable for characterising the
>>-lifting.



Definition 4.6. 1. We say that a strong monaḋT = (Ṫ , η̇, µ̇, θ̇) overE is a lifting of
a strong monadT = (T, η, µ, θ) overB if the following holds:

p ◦ Ṫ = T ◦ p, p ◦ η̇ = η ◦ p, p ◦ µ̇ = µ ◦ p, p(θ̇X,Y ) = θpX,pY .

2. We writeMon(B) for the category of strong monads overB and strong monad
morphisms between them.

3. We define a categoryMonl(E) using the following data:
– An object inMonl(E) is a pair of a strong monaḋT over E and a strong

monadT overB such thatṪ is a lifting of T . We sometimes represent an ob-
ject inMonl(E) simply by a strong monad overE when its underlying strong
monad overB is clear from the context.

– A morphism inMonl(E) is a pair of strong monad morphismsα̇ : Ṫ → Ṫ ′
andα : T → T ′ such thatp ◦ α̇ = α ◦ p.

4. We writeMon(p) : Monl(E) → Mon(B) for the following forgetful functor:

Mon(p)(Ṫ , T ) = T , Mon(p)(α̇, α) = α.

Theorem 4.7. Mon(p) is a fibration.

Proof. See appendix A.1 ut

We are ready to give a categorical account of the semantic>>-lifting. We capture
the>>-lifting as a construction of a lifting of a strong monad overE from that overB.
For this construction,continuation monadsplay a crucial role. We observe the following
facts.

– For each objectI in B, an endofunctor(− ( I) ( I overB is a strong monad
(called continuation monad). Particularly, for a strong monadT over B and an
objectR in B, we have a continuation monad(− ( TR) ( TR and a strong
monad morphism

σ : T // (− ( TR) ( TR

whose component at an objectI in B is given by the following transposition (object
annotations are omitted):

TI ⊗ (I ( TR)
s // (I ( TR)⊗ TI

θ // T ((I ( TR)⊗ I)
@#

// TR

σI = λ(@# ◦ θ ◦ s) : TI // (I ( TR) ( TR

wheres and@ are a symmetry and an evaluation morphisms inB, respectively.
– LetS be an object inE aboveTR and consider a continuation monad(− (̇ S) (̇ S

overE. It is a lifting of (− ( TR) ( TR sincep strictly preserves the symmetric
monoidal closed structure inE.

The following diagram summarises these facts inMon(p):

(− (̇ S) (̇ S Monl(E)

Mon(p)

��
T σ

// (− ( TR) ( TR Mon(B)



We now consider a Cartesian lifting ofσ.

σ∗((− (̇ S) (̇ S) σ // (− (̇ S) (̇ S Monl(E)

Mon(p)

��
T σ

// (− ( TR) ( TR Mon(B)

We claim that the vertexσ∗((− (̇ S) (̇ S), which is by definition a lifting ofT ,
gives the>>-lifting of T . There are two sets of evidence supporting our claim.

– The set-theoretic>>-lifting in section 3 is an instance of this generalised>>-
lifting. We work in the fibrationπ : Sub(Set) → Set from example 4.3. Subse-
quently, for any strong monadT and subsetsX ⊆ I andS ⊆ TR, we have:

σ∗((X ⇒̇ S) ⇒̇ S) = {x ∈ TI | σ∗(x) ∈ ((X ⇒̇ S) ⇒̇ S)}
= {x ∈ TI | ∀f ∈ X ⇒̇ S . σ∗(x)(f) ∈ S}
= {x ∈ TI | ∀f ∈ X ⇒̇ S . f#x ∈ S}
= X>>.

– Let D,E be pointedω-CPOs andR be an arbitrary subset ofD×E. In [1], Abadi
considered the following closure operation(−)>> as a semantic abstraction of
Pitts’ syntactic>>-closure operation [21]:

R> = {(f, g) ∈ [D →⊥ O]× [E →⊥ O] | ∀(x, y) ∈ R . fx = gy}
R>> = {(x, y) ∈ D × E | ∀(f, g) ∈ R> . fx = gy}

where[− →⊥ −] denotes strictω-continuous function spaces.
The above closure operation is an instance of our semantic>>-lifting. We work
in the fibrationπ2 : Rel(ωCPPO) → (ωCPPO)2 from example 4.5. The>>-
lifting of the identity monadover (ωCPPO)2 with the following data coincides
with Abadi’s>>-closure operation.
• The result typeR is (O,O).
• The result predicateS is ({(⊥,⊥), (>,>)}, (O,O)).

We writeT >> for σ∗((− (̇ S) (̇ S).

5 Multiple Result Types

We relax the restriction we imposed on the result type in section 3. Letp : E → B be a
bifibration with a lifted symmetric monoidal closed structure andT be a strong monad
overB.

Theorem 5.1. If p has fibred (finite/small) products, then so doesMon(p).

Proof. See appendix A.2. ut



Let {(Sk, Rk)}k∈K be a set of pairs of objects inE andB such thatpSk = TRk for all
k ∈ K. For eachk ∈ K, the pair(Sk, Rk) determines a>>-lifting T >>k . They are all
liftings of T , so we consider the following fibred product inMonl(E)T :∧

k∈K

T >>k

which is again a lifting ofT .

Example 5.2.We flip the relationS in example 3.6 and obtain the following>>-lifting:

P>>′ = {(p, q) | ∀b ∈ q . ∃a ∈ p . (a, b) ∈ P}.

The intersection

P>>∧P>>′ = {(p, q) | (∀b ∈ q . ∃a ∈ p . (a, b) ∈ P )∧(∀a ∈ p . ∃b ∈ q . (a, b) ∈ P )}

coincides with the pattern of bisimulation.

6 Related Work

This work has been inspired by Lindley and Stark’s paper [12] and Lindley’s thesis
[11]. Lindley and Stark introduce the syntactic>>-lifting for λml and prove the strong
normalisation ofλml. In the latter part of [12], they also discuss an extension of the
syntactic>>-lifting to other types such as sum types. However, this extension has not
been covered here.

Operations which are similar to Lindley and Stark’s>>-lifting have previously ap-
peared in several other studies. Some examples of these studies are: the reducibility
technique for linear logic by Girard [4], Parigot’s work on the second order classical
natural deduction [20], Pitts’>>-closure operation [21] and Melliès and Vouillon’s
biorthogonality [15]. In addition, Abadi gives a semantic formulation of Pitts’>>-
closure operation and discusses the relationship between>>-closed relations (those
which satisfyR = R>>) and admissibility [1]. The>>-closed relations are applied to
the verification of the correctness of program transformations [8, 19], and to the char-
acterisation of the observational equivalence for a language with local states [22].

Categorical study of logical predicates established in [13, 17] is generalised by Her-
mida using fibrational category theory [6]. The key observation of his generalisation is
that logical predicates with respect to a fibrationp : E → B employ a CCC structure
in E which is strictly preserved byp. This observation leads us to consider liftings of
strong monads and bifibrations with lifted symmetric monoidal closed structures.

In general, there are many liftings of a strong monad. In [3], Larrecq, Lasota and
Nowak propose a construction method of liftings of strong monads using factorisation
systems. Their method appears to be fundamentally different from our semantic>>-
lifting. However, some of their examples of liftings of strong monads overSet can also
be calculated with our method. It will be interesting to establish a formal relationship
between their lifting of strong monads and the semantic>>-lifting developed by us.



7 Conclusion

We semantically formulated Lindley and Stark’s>>-lifting and showed that it provides
a satisfactory construction method of logical predicates forλml. We also examined
several examples of the semantic>>-lifting of strong monads overSet.

We then categorically re-formulated the>>-lifting as a lifting of a monad along
a bifibration with a symmetric monoidal closed structure using continuation monads.
This generalisation subsumes the set-theoretic>>-lifting in section 3 and Abadi’s>>-
lifting.
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A Proof

A.1 Proof of theorem 4.7

Whenp : E → B is a fibration,p ◦ − : [E, E] → [E, B] is also a fibration. Then an
endofunctorF overE is a lifting of an endofunctorG overB if and only if F is above
G ◦ p in the fibrationp ◦ −.

Let T , T ′ be strong monads overB, α : T → T ′ be a strong monad morphism
andṪ ′ be a strong monad overE which is a lifting ofT ′. We construct a monaḋT =
(Ṫ , η̇, µ̇, θ̇) together with a strong monad morphisṁα : Ṫ → Ṫ ′ which is Cartesian
aboveα.

– We define the endofunctoṙT : E → E to be the vertex(α ◦ p)∗Ṫ ′ of the following
Cartesian lifting ofα ◦ p in the fibrationp ◦ −:

(α ◦ p)∗Ṫ ′
(α◦p)(Ṫ ′) // Ṫ ′

T ◦ p
α◦p

// T ′ ◦ p

We defineα̇ = (α ◦ p)(Ṫ ′).



– We define the uniṫη and the multiplicatioṅµ by the morphisms obtained from the
universal property of the Cartesian morphismα̇ in the fibrationp ◦ −:

IdE

η̇
""

η̇′

!!

Ṫ ◦ Ṫ

µ̇
%%

µ̇′ • (α̇∗α̇)

##
Ṫ α̇

// Ṫ ′ Ṫ α̇
// Ṫ ′

p

η◦p
""EE

EE
EE

EE
E η′◦p

!!

T ◦ T ◦ p

µ◦p
%%JJJJJJJJJ (µ′ • (α∗α))◦p

##
T ◦ p

α◦p
// T ′ ◦ p T ◦ p

α◦p
// T ′ ◦ p

– For objectsX, Y in E above objectsI, J in B respectively, we define the strength
θ̇X,Y as follows:

X⊗̇Ṫ Y θ̇′X,Y ◦(X⊗̇α̇Y )

''θ̇X,Y %%
Ṫ (X⊗̇Y )

α̇X⊗̇Y

// Ṫ ′(X⊗̇Y )

I ⊗ TJ θ′I,J◦(I⊗αJ )

''θI,J &&LLLLLLLLLL

T (I ⊗ J)
αI⊗J

// T ′(I ⊗ J)

We can easily verify thaṫη, µ̇, θ̇ satisfy the law of strong monad using the fact thatp is
faithful (sincep is a preordered fibration). For example, to showµ̇X ◦ Ṫ (η̇X) = idX

for each objectX in E, we calculate:

p(µ̇X ◦ Ṫ (η̇X)) = µpX ◦ T (ηpX) = idpX = p(idX).

Sincep is faithful, we conclude thaṫµX ◦ Ṫ (η̇X) = idX .

The morphismα̇ is clearly a monad morphism from the construction ofη̇, µ̇, θ̇.



To see thaṫα is a Cartesian morphism, we consider a situation inMon(p) described
in the left diagram:

Ṫ ′′ β̇

""

Ṫ ′′

γ̇
##

β̇

%%
Ṫ α̇

// Ṫ ′ Ṫ α̇
// Ṫ ′

T ′′ β

""
γ

��@
@@

@@
@@

@ T ′′ ◦ p β◦p

%%
γ◦p

##HH
HH

HH
HH

H

T α
// T ′ T ◦ p

α◦p
// T ′ ◦ p

This situation induces the right diagram inp ◦ −. From the universal property oḟα,
we obtain a unique morphisṁγ : Ṫ ′′ → Ṫ aboveγ ◦ p satisfyingα̇ • γ̇ = β̇. To
verify thatγ̇ is a strong monad morphism, we use the universal property ofα̇. We show
γ̇ • η̇′′ = η̇ as an example. First,γ̇ • η̇′′ andη̇ are aboveη ◦ p in the fibrationp ◦ −.
Next, we have

α̇ • γ̇ • η̇′′ = β̇ • η̇′′ = η̇′ = α̇ • η̇

From the universal property oḟα, we haveγ̇ • η̇′′ = η̇. We can similarly verify the
other equations of the law of strong monad morphism. ut

A.2 Proof of theorem 5.1

(Sketch) LetT = (T, η, µ, θ) be a strong monad overB, K be a (finite) set and suppose
that we have a liftingṪk = (Ṫk, η̇k, µ̇k, θ̇k) of T for eachk ∈ K.

The fibred product̂̇T = ( ˆ̇T, ˆ̇η, ˆ̇µ,
ˆ̇
θ) of Ṫk is given as follows.

– The functor part is defined bẏ̂TX =
∧

k∈K ṪkX. We writeπk
X : ˆ̇TX → ṪkX for

thek-th projection.
– We observe that for objectsX, Y in E and a morphismf : pX → pY in B, we

have the following natural isomorphism:

Ef (X, ˆ̇TY ) ∼= EpX(X, f∗( ˆ̇TY )) ∼= EpX

(
X,

∧
k∈K

f∗Ṫk

)
∼=
∏
k∈K

Ef (X, ṪkY ).

We writeφ for the right-to-left part of the above isomorphism. The unit, multipli-
cation and strength is then defined by:

ˆ̇ηX = φ〈(η̇k)X〉k∈K

ˆ̇µX = φ〈(µ̇k)X ◦ Ṫk(πk
X) ◦ πk

X〉k∈K

ˆ̇
θX,Y = φ〈(θ̇k)X,Y ◦ (X ⊗̇ πk

Y )〉k∈K

The reader can verify thaṫ̂T is indeed a strong monad, and is a fibred product of
{Ṫk}k∈K .


