
A Semantic Formulation of >>-lifting and
Logical Predicates for Computational Metalanguage

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University
sinya@kurims.kyoto-u.ac.jp

Abstract. A semantic formulation of Lindley and Stark’s>>-lifting is given.
We first illustrate our semantic formulation of the>>-lifting in Set with sev-
eral examples, and apply it to the logical predicates for Moggi’s computational
metalanguage. We then abstract the semantic>>-lifting as the lifting of strong
monads across bifibrations with lifted symmetric monoidal closed structures.

1 Introduction

Logical predicates are a method for extracting submodels of the pure simply typed
lambda calculus (λ⇒ for short) by induction on type. Logical predicates are widely
applied to the reasoning of the properties ofλ⇒ [23, 9, 24, 16].

We are interested in extending logical predicates toMoggi’s computational meta-
language(λml for short) [18], which has additional typesTτ calledmonadic type. To
do so, we need to consider a scheme to calculate a predicate at typeTτ from a predicate
at typeτ . Recently, Lindley and Stark develop theleapfrog methodand show the strong
normalisation ofλml in the style of Tait-Girard reducibility [12, 11]. The novelty of
the leapfrog method is the operation called>>-lifting, which calculates a reducibility
predicate at typeTτ from a reducibility predicate at typeτ .

However, Lindley and Stark’s>>-lifting is defined with respect to the syntactic
structure ofλml, and is designed for the proof of the strong normalisation. This paper
attempts to provide a semantic aspect of their>>-lifting. The main contribution of this
paper is twofolds:

1. We provide a semantic formulation of Lindley and Stark’s>>-lifting in set theory
(section 3). This formulation is carried out by finding a semantic counterpart for
each of the building block in>>-lifting. We instanciate>>-liftings with well-
known strong monads overSet, and show that the logical predicates using the
semantic>>-lifting implies thebasic lemmaof logical predicates.

2. We re-formulate the above semantic>>-lifting as a construction ofliftings of
strong monads, and give a categorical account of this construction within the frame-
work of fibred category theory (section 4). We then show that the above semantic
>>-lifting and Abadi’s>>-closure operation are instances of>>-lifting.

2 Preliminaries

Moggi’s Computational Metalanguage

We begin with the syntax ofλml. We define the set of typesTypml by the following
BNF (we consider a single base typeb for simplicity):

Typml 3 τ ::= b | τ ⇒ τ | Tτ.

Monadic typesTτ are for the programs yielding values of typeτ with some com-
putational effect. Atyping context(ranged over byΓ) is simply a finite sequence of
variable-type pairs without any duplication of variables.

The calculusλml has two new term constructions related to monadic types:[−] and
“ let xτ be M in N ”. Their typing rules are the following:

Γ ` M : τ
Γ ` [M] : Tτ

Γ ` M : Tτ Γ, x : τ ` N : Tτ ′

Γ ` let xτ be M in N : Tτ ′

The term[M] expresses the value ofM involving the trivial computational effect. The
term “let xτ be M in N ” expresses a sequential computation ofM andN ; the termM
is first computed, its value is then bound toxτ and next the termN is computed.

Equational theory ofλml extendsβη axioms ofλ⇒ with the following axioms:

let xτ be [M] in N = N [M/x] (T.β)
let xτ be M in [xτ] = M (T.η)

let xτ be (let yτ ′ be L in M) in N = let yτ ′ be L in let xτ be M in N (T.assoc)

Categorical Semantics ofλml

A categorical semantics ofλml is given in a Cartesian closed categoryC equipped with
a strong monadT = (T, η, µ, θ). We omit the formal definition of strong monads;
see e.g. [18]. For a morphismf : A → TB in C, we write f# for the morphism
µB ◦ Tf : TA → TB.

Let B be an object inC. We first assign to each typeτ an object[[τ]] in C by
induction on type:

[[b]] = B, [[τ ⇒ τ ′]] = [[τ]] ⇒ [[τ ′]], [[Tτ]] = T [[τ]].

We extend this assignment to typing contexts by

[[x1 : τ1, · · · , xn : τn]] = [[τ1]]× · · · × [[τn]].

The semantics ofλml in C is an extension of the standard categorical semantics ofλ⇒

with the following rules:

– For a well-formed termΓ ` [M] : Tτ , we define

[[[M]]] = η[[τ]] ◦ [[M]].

– For a well-formed termΓ ` let xτ be M in N : Tτ ′, we define

[[let xτ be M in N]] = [[N]]# ◦ θ[[Γ]],[[τ]] ◦ 〈id[[Γ]], [[M]]〉

3 A Semantic Formulation of>>-lifting

In [12], Lindley and Stark prove the strong normalisation ofλml by extending the
reducibility predicate technique. The novelty of their method is the operation called
>>-lifting, which calculates a reducibility predicate at a monadic type from that at an
ordinary type.

Definition 3.1 ([12], section 3.1).

1. We define the set ofraw continuationsby the following BNF:

K ::= Id | K ◦ (xτ .N)

where the notation(xτ .N) indicates thatN is a term with a distinguished free
variablexτ .
A judgement for a raw continuation is a tripleTτ `C K : Tτ ′. Raw continuations
are typed by the following rules:

Tτ `C Id : Tτ

x : τ ` N : Tτ ′ Tτ ′ `C K : Tτ ′′

Tτ `C K ◦ (xτ .N) : Tτ ′′

We writeTτ `C K to mean that there exists a (unique) typeTτ ′ such thatTτ `C

K : Tτ ′ is derived from the above rules.
2. We define anapplicationK@M of a termM to a continuationK by

Id@M = M, (K ◦ (xτ .N))@M = K@(let xτ be M in N).

3. Given a setP of terms of typeτ , we define a setP>> of terms of typeTτ by

P> = {Tτ `C K | ∀M ∈ P . K@[M] ∈ SN}
P>> = {M : Tτ | ∀K ∈ P> . K@M ∈ SN}

whereSN is the set of strongly normalising terms.

From this point, we letT = (T, η, µ, θ) be a strong monad overSet, and fix a
categorical semantics ofλml with respect to the strong monadT and the evident CCC
structure inSet. We give a semantic formulation of the syntactic>>-lifting by finding
semantic counterparts of continuations, applications and the setSN . This formulation
is carried out with respect to the strong monadT . We introduce the following notation:
for subsetsX ⊆ I andY ⊆ J , byX ⇒̇ Y we mean the subset{f | ∀x ∈ X . f(x) ∈ Y }
of I ⇒ J .

To simplify the situation, we assume that all continuations in definition 3.1 have the
same typeTρ (this restriction will be relaxed in section 5). We letR = [[ρ]].

Continuation We formulate a continuation as a function

f ∈ [[τ]] ⇒ TR.

We explain the idea of this formulation below. We notice that a continuationTτ `C

Id ◦ (xτ .M) : Tρ is equivalent to a contextlet xτ be − in M , and an application
of a term to the continuation is equivalent to plugging the term in the hole of the
context. The essential information of the context is the bodyM , and it has the
following typing:

x : τ ` M : Tρ.

Our formulation represents this information as a functionf ∈ [[τ]] ⇒ TR.
Application We define an application of an elementx ∈ [[Tτ]] to a continuationf ∈

[[τ]] ⇒ TR to bef#x.
The SetSN The setSN is hard-coded in the definition ofP> andP>> since the

syntactic>>-lifting is designed for the proof of the strong normalisation ofλml.
We replaceSN with some subsetS ⊆ TR, and callS a result predicate.
We also relax the condition that the setR is given by[[ρ]] with some typeρ; we
simply allowR to be any set and callR a result type.

Once continuations, applications and the setSN are semantically formulated, it is
straightforward to defineP> andP>>. We summarise the above discussion as follows:

Definition 3.2. Let R be a set (calledresult type) and S ⊆ TR be a subset (called
result predicate).

1. Acontinuationis a functionf ∈ [[τ]] ⇒ TR.
2. We define anapplicationof x ∈ [[Tτ]] to a continuationf ∈ [[τ]] ⇒ TR to bef#x.
3. LetP ⊆ [[τ]] be a subset. We define a subsetP>> ⊆ [[Tτ]] by

P> = {f ∈ [[τ]] ⇒ TR | ∀x ∈ P . f(x) ∈ S} = P ⇒̇ S

P>> = {x ∈ [[Tτ]] | ∀f ∈ P> . f#(x) ∈ S},

which is equivalent to

P>> = {x ∈ [[Tτ]] | ∀f ∈ P ⇒̇ S . f#(x) ∈ S}.

We call the operation(−)>> the>>-lifting of T with R andS ⊆ TR.

We can also consider the semantic>>-lifting for binary relations (binary>>-lifting
for short) over the semantics ofλml. Let R be a set andS ⊆ (TR)2 be a subset. A
continuation is a pair(f, g) of functions from[[τ]] to TR. An application of(x, y) ∈
[[Tτ]]2 to a continuation(f, g) is defined to be(f#x, g#y). For a binary relationP ⊆
[[τ]]2, we defineP>> as follows:

P> = {(f, g) ∈ ([[τ]] ⇒ TR)2 | ∀(x, y) ∈ P . (fx, gy) ∈ S}
P>> = {(x, y) ∈ [[Tτ]]2 | ∀(f, g) ∈ P> . (f#x, g#y) ∈ S}.

Examples of Semantic>>-liftings

An interesting point is that we can obtain>>-liftings for various strong monads and
result type/predicate pairs. We see some concrete examples of the semantic>>-lifting
below.

Example 3.3.We consider thelifting monadT⊥, which simply adjoins an extra element
⊥ to a given set. We calculate a>>-lifting of T⊥ with the following data:

– The result typeR is {∗} (thusT⊥R = {∗,⊥}).
– The result predicateS is {∗}.

For a subsetP ⊆ [[τ]], we haveP>> = P .

Example 3.4.We consider thestate monadTs whose functor part is given byTsI =
M ⇒ I ×M for some setM . We letM0 ⊆ M be a subset and calculate a>>-lifting
of Ts with the following data:

– The result typeR is some set.
– The result predicateS is M0 ⇒̇ R × M0, the set of functionsf ∈ TsR such that
∀x ∈ M0 . f(x) ∈ M0 ×R.

For a subsetP ⊆ [[τ]], we expand the definition ofP>> and obtain

P>> = {f ∈ Ts[[τ]] | ∀g ∈ P ×M0 ⇒̇ R×M0 . g ◦ f ∈ M0 ⇒̇ R×M0}.

In fact,P>> can be characterised as follows:

P>> =
{

M0 ⇒̇ P ×M0 (∅ (R×M0 (R×M)
Ts[[τ]] (otherwise)

Below we prove the first case of this characterisation; the second case is trivial. We first
prove

P ×M0 = {i ∈ [[τ]]×M | ∀g ∈ P ×M0 ⇒̇ R×M0 . g(i) ∈ R×M0}.

(⊆) Easy. (⊇) Let x 6∈ P × M0. From the assumption onR × M0, we can take two
elementss ∈ R × M0 ands′ ∈ (R × M)\(R × M0). We then define the following
functiong ∈ [[τ]]×M ⇒ R×M :

g(x) =
{

s (x ∈ P ×M0)
s′ (x 6∈ P ×M0)

which is clearly included inP × M0 ⇒̇ R × M0. Howeverg(x) 6∈ R × M0, so we
conclude thatx 6∈ (r.h.s.). Therefore

f ∈ M0 ⇒̇ P ×M0

⇐⇒ ∀x ∈ M0 . ∀g ∈ P ×M0 ⇒̇ R×M0 . g(f(x)) ∈ R×M0

⇐⇒ f ∈ P>>.

Example 3.5.We calculate a binary>>-lifting of the lifting monadT⊥ with the fol-
lowing data:

– The result typeR is a one-point set{∗}. We haveT⊥R = {⊥, ∗}.
– The result predicateS ⊆ (T⊥R)2 is {(x, y) ∈ (T⊥R)2 | (x = ∗ =⇒ y = ∗)}.

For a subsetP ⊆ [[τ]], we obtainP>> = P ∪ {(⊥,⊥)}.

Example 3.6.We consider thefinite powerset monadTp, whose functor part is given
by Tp(X) = {x ⊆ X | x is a finite set}. We calculate a binary>>-lifting wf Tp with
the following data:

– The result typeR is a one-point set{∗}. We haveTpR = {∅, R}.
– The result predicateS ⊆ (TpR)2 is {(x, y) ∈ (TpR)2 | x = R =⇒ y = R}.

We identify a functionf ∈ [[τ]] ⇒ TpR and a subset (written with the capital letter of
the function)F = {x ∈ [[τ]] | f(x) = R} ⊆ [[τ]]. Under this identification, for each
x ∈ Tp[[τ]], we have

f#x = R ⇐⇒
⋃
e∈x

fe = R ⇐⇒ ∃e ∈ x . e ∈ F.

For a subsetP ⊆ [[τ]], we expand the definition ofP>> and obtain

P>> = {(p, q) ∈ (Tp[[τ]])2 | ∀F,G ⊆ [[τ]] . (∀(x, y) ∈ P . x ∈ F =⇒ y ∈ G) =⇒
∀e ∈ p . e ∈ F =⇒ ∃e′ ∈ q . e′ ∈ G}.

This is not intuitive, but interestingly we have the following characterisation ofP>>:

P>> = {(p, q) | ∀a ∈ p . ∃b ∈ q . (a, b) ∈ P}. (1)

This appears in the pattern of definingpre-bisimulation relationin concurrency.
The rest of this example is the proof of equation 1. (⊆) Let (p, q) ∈ P>> anda ∈ p.

We show∃b ∈ q . (a, b) ∈ P . We supply{a} and{b | (a, b) ∈ P} to F andG in the
definition of(p, q) ∈ P>>. We obtain

(∀(x, y) ∈ P . x = a =⇒ (a, y) ∈ P})
=⇒ (∀e ∈ p . e = a =⇒ ∃e′ ∈ q . (a, e′) ∈ P})

whose premise part is trivially true. By lettinge be a in the conclusion part of the
above formula, we obtain∃e′ ∈ q . (a, e′) ∈ P . (⊇) We takep, q ∈ Tp[[τ]] such that
∀a ∈ p . ∃b ∈ q . (a, b) ∈ P . Let F,G ⊆ [[τ]], e ∈ p and assume∀(x, y) ∈ P . x ∈
F =⇒ y ∈ G (we call this assumption (*)) ande ∈ F . We show∃e′ ∈ q . e′ ∈ G.
Sincee ∈ p, there existse′ ∈ q such that(e, e′) ∈ P . From (*), we havee ∈ F =⇒
e′ ∈ G. Thuse′ gives a witness of∃e′ ∈ q . e′ ∈ G.

Logical Predicates forλml Using>>-lifting

The semantic>>-lifting constructs a subset of[[Tτ]] from a subset of[[τ]]. This con-
struction is suitable for extending the concept oflogical predicatestoλml. We show that
a logical predicate using the semantic>>-lifting extract a submodel ofλml. We fix a
result typeR and a result predicateS ⊆ TR, and consider the>>-lifting determined
by R andS.

Definition 3.7. A>>-logical predicateis a type-indexed family{P τ ⊆ [[τ]]}τ∈Typml

of subsets satisfying

PTτ = (P τ)>>, P τ⇒τ ′ = P τ ⇒̇ P τ ′ .

For a typing contextΓ = x1 : τ1, · · · , xn : τn, byPΓ we mean the productP τ
1 ×· · ·×

P τ
n , which is a subset of[[Γ]].

Theorem 3.8 (Basic Lemma).LetP be a>>-logical predicate. For any well-formed
termΓ ` M : τ , we have[[M]] ∈ PΓ ⇒̇ P τ .

Proof. We show the following properties on the>>-lifting. Let X ⊆ I andY ⊆ J be
subsets.

1. ηI ∈ X ⇒̇ X>>. Let x ∈ X. Then for anyf ∈ X ⇒̇ S, we havef#(ηI(x)) =
f(x) ∈ S. ThereforeηI(x) ∈ X>>.

2. µI ∈ (X>>)>> ⇒̇ X>>. Let x ∈ (X>>)>> and f ∈ X ⇒̇ S. We show
f#(µI(x)) ∈ S. It is easy to show thatf ∈ X ⇒̇ S implies f# ∈ X>> ⇒̇ S,
hence(f#)# ∈ (X>>)>> ⇒̇ S. Notice thatf#(µI(x)) = (f#)#(x). Therefore
f#(µI(x)) ∈ S.

3. θI,J ∈ X × Y >> ⇒̇ (X × Y)>>. Let a ∈ X, b ∈ Y >> andf ∈ X × Y ⇒̇ S. We
showf# ◦ θI,J(a, b) ∈ S. We note that the strengthθI,J is given byθI,J(a, b) =
T (λb ∈ B . (a, b))(b) asSet is a well-pointed category (see e.g. [18]). Thusf# ◦
θI,J(a, b) = (λb ∈ B . f(a, b))#(b). Sinceλb ∈ B . f(a, b) ∈ Y ⇒̇ S, for each
b ∈ Y >> we have(λb ∈ B . f(a, b))#(b) ∈ S. Thereforef# ◦ θI,J(a, b) ∈ S

4. f ∈ X ⇒̇ Y impliesTf ∈ X>> ⇒̇ Y >>. Let x ∈ X>> andg ∈ Y ⇒̇ S. We
showg#(Tf(x)) = (g ◦ f)#(x) ∈ S. This holds fromg ◦ f ∈ X ⇒̇ S and the
definition ofx ∈ X>>.

5. From 2 and 4,f ∈ X ⇒̇ Y >> impliesf# ∈ X>> ⇒̇ Y >>.

We prove the theorem by induction on derivation of a well-formed termΓ ` M : τ .
We omit the cases for the syntax constructions inherited fromλ⇒; see e.g. [2]. The
cases new toλml is the following.

– CaseΓ ` [M] : Tτ . From IH, we have[[M]] : PΓ ⇒̇ P τ . From 1, we have
[[[M]]] = η[[τ]] ◦ [[M]] : PΓ ⇒̇ PTτ .

– CaseΓ ` let xτ be M in N : Tτ ′ with well-formed termsΓ ` M : Tτ andΓ, x :
τ ` N : Tτ ′. From IH,[[M]] : PΓ ⇒̇ PTτ and[[N]] : PΓ×P τ ⇒̇ PTτ ′ . From 3 and
5, we have[[N]]#◦θ[[Γ]],[[τ]] : PΓ ×PTτ ⇒̇ PTτ ′ . Therefore[[let xτ be M in N]] =
[[N]]# ◦ θ[[Γ]],[[τ]] ◦ 〈id[[Γ]], [[M]]〉 : PΓ ⇒̇ PTτ ′ .

ut

4 A Categorical Generalisation of>>-lifting

In the proof of theorem 3.8, we notice that the operation(−)>> resembles an endofunc-
tor (claim 4) equipped with morphisms constituting a strong monad (claim 1,2,3). It is

indeed a strong monad over the categorySub(Set) of subsets and functions respect-
ing subsets (example 4.3). Furthermore, the strong monad(−)>> makes the following
diagram commute:

Sub(Set)
(−)>> //

π

��

Sub(Set)

π

��
Set

T
// Set

whereπ : Sub(Set) → Set is the evident forgetful functor. This suggests that we can
understand the semantic>>-lifting as aconstructionof such a strong monad fromT .

We give a categorical generalisation of this construction using fibrations and sym-
metric monoidal closed structures. We replaceπ with a bifibrationp : E → B equipped
with a lifted symmetric monoidal closed structure (definition 4.2). We then capture the
semantic>>-lifting as a construction of a strong monad overE from that overB.

We borrow some notations from 2-category theory. We use• and∗ for the vertical
and horizontal compositions of natural transformations, respectively. We overload◦
with the notation for the composition of functors, as well as for the composition of a
functor and a natural transformation.

4.1 Preliminaries

Symmetric Monoidal Close Category We assume that the reader is familiar with
symmetric monoidal closed categories. We reserve symbolsI,⊗,(for unit objects,
tensor products and exponentials. Asymmetric monoidal functoris a functorF : C →
D between symmetric monoidal categoriesC, D together with morphismsmI : ID →
F IC andmX,Y : FX ⊗D FY → F (X ⊗C Y) satisfying certain coherence laws (see
e.g. [14]).

Example 4.1. 1. The categorySet has a symmetric monoidal closed structure given
by a chosen CCC structure.

2. The categoryωCPPO of pointedω-CPOs and strictω-continuous functions has
a symmetric monoidal closed structure given by Sierpinski spaceO = {⊥ v >},
smash products and strictω-continuous function spaces.

3. The functor× : (ωCPPO)2 → Set sending a pair(X, Y) of pointedω-CPOs to
the binary productX × Y of carrier sets is a symmetric monoidal functor.

Strong Monad A strong monadT over a symmetric monoidal categoryB is a tuple
(T, η, µ, θ) such that(T, η, µ) is an ordinary monad overB andθX,Y : X ⊗ TY →
T (X ⊗ Y) is a natural transformation calledtensorial strengthsatisfying certain co-
herence laws (see e.g. [10]). Astrong monad morphismfrom T = (T, η, µ, θ) to
T ′ = (T ′, η′, µ′, θ′) is a natural transformationσ : T → T ′ satisfying

µ′ • (σ ∗ σ) = σ • µ, η′ = σ • η, θ′X,Y ◦ (X ⊗ σY) = σX⊗Y ◦ θX,Y .

Fibration We assume that the reader is familiar with preliminaries on fibration. A good
reference is [7].

Definition 4.2. A functorp : E → B is a bifibration with a lifted symmetric monoidal
closed structureif p is a preordered bifibration,E andB are symmetric monoidal closed
categories andp strictly preserves the symmetric monoidal closed structure inE. We
use dot notatioṅI, ⊗̇ , (̇ to denote the symmetric monoidal closed structure inE
which are sent to the symmetric monoidal closed structureI,⊗,(in B byp.

Example 4.3.We define a categorySub(Set) by the following data: an object is a pair
(X, I) whereX is a subset ofI, and a morphisms from(X, I) to (Y, J) is a function
in X ⇒̇ Y . The categorySub(Set) has the following CCC structure:

1̇ = ({∗}, {∗})
(X, I) ×̇ (Y, J) = ({(i, j) | i ∈ X ∧ j ∈ Y }, I × J)
(X, I) ⇒̇ (Y, J) = (X ⇒̇ Y, I ⇒ J).

(here the reader should not worry about the confusion caused by a clash of the no-
tation ⇒̇). This structure is strictly preserved by the evident forgetful functorπ :
Sub(Set) → Set, which is actually a partial-order bifibration. Thereforeπ is a bifi-
bration with a lifted symmetric monoidal closed structure.

One good property of the class of bifibrations with lifted symmetric monoidal closed
structures is the closure under change-of-base along symmetric monoidal functors.

Proposition 4.4 (e.g. [5]).Let p : E → B be a bifibration with a lifted symmetric
monoidal closed structure andF : C → B be a symmetric monoidal functor. Then the
change-of-base ofp along F is again a bifibration with a lifted symmetric monoidal
closed structure.

Example 4.5.We consider the following change-of-base ofπ along×:

Rel(ωCPPO)
_� //

π2

��

Sub(Set)

π

��
(ωCPPO)2 ×

// Set

From proposition 4.4,π2 is again a bifibration with a lifted symmetric monoidal closed
structure. An object inRel(ωCPPO) is a triple(X, I, J) whereI, J are pointedω-
CPOs andX is an arbitrary subset ofI × J , that is, a binary relation betweenI andJ .
A morphism inRel(ωCPPO) from (X, I, J) to (X ′, I ′, J ′) is a pair(f : I → I ′, g :
J → J ′) of strictω-continuous functions such thatf × g ∈ X ⇒̇X ′. We can similarly
derive the category ofn-ary relations betweenω-CPOs by change-of-base.

4.2 >>-lifting as a Construction of Liftings of Strong Monads

We fix a bifibrationp : E → B with a lifted symmetric monoidal closed structure.
We define a fibration oflifted strong monadswhich is suitable for characterising the
>>-lifting.

Definition 4.6. 1. We say that a strong monaḋT = (Ṫ , η̇, µ̇, θ̇) overE is a lifting of
a strong monadT = (T, η, µ, θ) overB if the following holds:

p ◦ Ṫ = T ◦ p, p ◦ η̇ = η ◦ p, p ◦ µ̇ = µ ◦ p, p(θ̇X,Y) = θpX,pY .

2. We writeMon(B) for the category of strong monads overB and strong monad
morphisms between them.

3. We define a categoryMonl(E) using the following data:
– An object inMonl(E) is a pair of a strong monaḋT over E and a strong

monadT overB such thatṪ is a lifting of T . We sometimes represent an ob-
ject inMonl(E) simply by a strong monad overE when its underlying strong
monad overB is clear from the context.

– A morphism inMonl(E) is a pair of strong monad morphismsα̇ : Ṫ → Ṫ ′
andα : T → T ′ such thatp ◦ α̇ = α ◦ p.

4. We writeMon(p) : Monl(E) → Mon(B) for the following forgetful functor:

Mon(p)(Ṫ , T) = T , Mon(p)(α̇, α) = α.

Theorem 4.7. Mon(p) is a fibration.

Proof. See appendix A.1 ut

We are ready to give a categorical account of the semantic>>-lifting. We capture
the>>-lifting as a construction of a lifting of a strong monad overE from that overB.
For this construction,continuation monadsplay a crucial role. We observe the following
facts.

– For each objectI in B, an endofunctor(− (I) (I overB is a strong monad
(called continuation monad). Particularly, for a strong monadT over B and an
objectR in B, we have a continuation monad(− (TR) (TR and a strong
monad morphism

σ : T // (− (TR) (TR

whose component at an objectI in B is given by the following transposition (object
annotations are omitted):

TI ⊗ (I (TR)
s // (I (TR)⊗ TI

θ // T ((I (TR)⊗ I)
@#

// TR

σI = λ(@# ◦ θ ◦ s) : TI // (I (TR) (TR

wheres and@ are a symmetry and an evaluation morphisms inB, respectively.
– LetS be an object inE aboveTR and consider a continuation monad(− (̇ S) (̇ S

overE. It is a lifting of (− (TR) (TR sincep strictly preserves the symmetric
monoidal closed structure inE.

The following diagram summarises these facts inMon(p):

(− (̇ S) (̇ S Monl(E)

Mon(p)

��
T σ

// (− (TR) (TR Mon(B)

We now consider a Cartesian lifting ofσ.

σ∗((− (̇ S) (̇ S) σ // (− (̇ S) (̇ S Monl(E)

Mon(p)

��
T σ

// (− (TR) (TR Mon(B)

We claim that the vertexσ∗((− (̇ S) (̇ S), which is by definition a lifting ofT ,
gives the>>-lifting of T . There are two sets of evidence supporting our claim.

– The set-theoretic>>-lifting in section 3 is an instance of this generalised>>-
lifting. We work in the fibrationπ : Sub(Set) → Set from example 4.3. Subse-
quently, for any strong monadT and subsetsX ⊆ I andS ⊆ TR, we have:

σ∗((X ⇒̇ S) ⇒̇ S) = {x ∈ TI | σ∗(x) ∈ ((X ⇒̇ S) ⇒̇ S)}
= {x ∈ TI | ∀f ∈ X ⇒̇ S . σ∗(x)(f) ∈ S}
= {x ∈ TI | ∀f ∈ X ⇒̇ S . f#x ∈ S}
= X>>.

– Let D,E be pointedω-CPOs andR be an arbitrary subset ofD×E. In [1], Abadi
considered the following closure operation(−)>> as a semantic abstraction of
Pitts’ syntactic>>-closure operation [21]:

R> = {(f, g) ∈ [D →⊥ O]× [E →⊥ O] | ∀(x, y) ∈ R . fx = gy}
R>> = {(x, y) ∈ D × E | ∀(f, g) ∈ R> . fx = gy}

where[− →⊥ −] denotes strictω-continuous function spaces.
The above closure operation is an instance of our semantic>>-lifting. We work
in the fibrationπ2 : Rel(ωCPPO) → (ωCPPO)2 from example 4.5. The>>-
lifting of the identity monadover (ωCPPO)2 with the following data coincides
with Abadi’s>>-closure operation.
• The result typeR is (O,O).
• The result predicateS is ({(⊥,⊥), (>,>)}, (O,O)).

We writeT >> for σ∗((− (̇ S) (̇ S).

5 Multiple Result Types

We relax the restriction we imposed on the result type in section 3. Letp : E → B be a
bifibration with a lifted symmetric monoidal closed structure andT be a strong monad
overB.

Theorem 5.1. If p has fibred (finite/small) products, then so doesMon(p).

Proof. See appendix A.2. ut

Let {(Sk, Rk)}k∈K be a set of pairs of objects inE andB such thatpSk = TRk for all
k ∈ K. For eachk ∈ K, the pair(Sk, Rk) determines a>>-lifting T >>k . They are all
liftings of T , so we consider the following fibred product inMonl(E)T :∧

k∈K

T >>k

which is again a lifting ofT .

Example 5.2.We flip the relationS in example 3.6 and obtain the following>>-lifting:

P>>′ = {(p, q) | ∀b ∈ q . ∃a ∈ p . (a, b) ∈ P}.

The intersection

P>>∧P>>′ = {(p, q) | (∀b ∈ q . ∃a ∈ p . (a, b) ∈ P)∧(∀a ∈ p . ∃b ∈ q . (a, b) ∈ P)}

coincides with the pattern of bisimulation.

6 Related Work

This work has been inspired by Lindley and Stark’s paper [12] and Lindley’s thesis
[11]. Lindley and Stark introduce the syntactic>>-lifting for λml and prove the strong
normalisation ofλml. In the latter part of [12], they also discuss an extension of the
syntactic>>-lifting to other types such as sum types. However, this extension has not
been covered here.

Operations which are similar to Lindley and Stark’s>>-lifting have previously ap-
peared in several other studies. Some examples of these studies are: the reducibility
technique for linear logic by Girard [4], Parigot’s work on the second order classical
natural deduction [20], Pitts’>>-closure operation [21] and Melliès and Vouillon’s
biorthogonality [15]. In addition, Abadi gives a semantic formulation of Pitts’>>-
closure operation and discusses the relationship between>>-closed relations (those
which satisfyR = R>>) and admissibility [1]. The>>-closed relations are applied to
the verification of the correctness of program transformations [8, 19], and to the char-
acterisation of the observational equivalence for a language with local states [22].

Categorical study of logical predicates established in [13, 17] is generalised by Her-
mida using fibrational category theory [6]. The key observation of his generalisation is
that logical predicates with respect to a fibrationp : E → B employ a CCC structure
in E which is strictly preserved byp. This observation leads us to consider liftings of
strong monads and bifibrations with lifted symmetric monoidal closed structures.

In general, there are many liftings of a strong monad. In [3], Larrecq, Lasota and
Nowak propose a construction method of liftings of strong monads using factorisation
systems. Their method appears to be fundamentally different from our semantic>>-
lifting. However, some of their examples of liftings of strong monads overSet can also
be calculated with our method. It will be interesting to establish a formal relationship
between their lifting of strong monads and the semantic>>-lifting developed by us.

7 Conclusion

We semantically formulated Lindley and Stark’s>>-lifting and showed that it provides
a satisfactory construction method of logical predicates forλml. We also examined
several examples of the semantic>>-lifting of strong monads overSet.

We then categorically re-formulated the>>-lifting as a lifting of a monad along
a bifibration with a symmetric monoidal closed structure using continuation monads.
This generalisation subsumes the set-theoretic>>-lifting in section 3 and Abadi’s>>-
lifting.

Acknowledgement

I am grateful to Don Sannella, Samuel Lindley, Masahito Hasegawa, Miki Tanaka and
anonymous referees for their valuable advice. Most of this work was carried out in
Edinburgh university under an LFCS studentship.

References

1. M. Abadi.>>-closed relations and admissibility.MSCS, 10(3):313–320, 2000.
2. R. Amadio and P.-L. Curien.Domains and Lambda-Calculi, volume 46 ofCambridge Tracts

in Theoretical Computer Science. Cambridge University Press, 1998.
3. J. G.-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic types. InProc. CSL,

volume 2471 ofLNCS, pages 553–568. Springer, 2002.
4. J. Y. Girard. Linear logic.Theor. Comp. Sci., 50:1–102, 1987.
5. M. Hasegawa. Categorical glueing and logical predicates for models of linear logic. Tech-

nical Report RIMS-1223, Research Institute for Mathematical Sciences, Kyoto University,
1999.

6. C. Hermida.Fibrations, Logical Predicates and Indeterminants. PhD thesis, University of
Edinburgh, 1993.

7. B. Jacobs.Categorical Logic and Type Theory. Elsevier, 1999.
8. P. Johann. Short cut fusion is correct.J. Funct. Program., 13(4):797–814, 2003.
9. A. Jung and J. Tiuryn. A new characterization of lambda definability. InProc. TLCA, volume

664 ofLNCS, pages 245–257. Springer, 1993.
10. A. Kock. Strong functors and monoidal monads.Archiv der Mathematik, 23:113–120, 1970.
11. S. Lindley.Normalisation by Evaluation in the Compilation of Typed Functional Program-

ming Languages. PhD thesis, University of Edinburgh, 2004.
12. S. Lindley and I. Stark. Reducibility and>>-lifting for computation types. InTLCA, pages

262–277, 2005.
13. Q. Ma and J. Reynolds. Types, abstractions, and parametric polymorphism, part 2. InProc.

MFPS 1991, volume 598 ofLNCS, pages 1–40. Springer, 1992.
14. S. MacLane. Categories for the Working Mathematician (Second Edition), volume 5 of

Graduate Texts in Mathematics. Springer, 1998.
15. P.-A. Mellìes and J. Vouillon. Recursive polymorphic types and parametricity in an opera-

tional framework. InProc. LICS 2005. To appear.
16. J. Mitchell. Representation independence and data abstraction. InProc. POPL, pages 263–

276, 1986.
17. J. Mitchell and A. Scedrov. Notes on sconing and relators. InProc. CSL 1992, volume 702

of LNCS, pages 352–378. Springer, 1993.

18. E. Moggi. Notions of computation and monads.Information and Computation, 93(1):55–92,
1991.

19. S. Nishimura. Correctness of a higher-order removal transformation through a relational
reasoning. InAPLAS, volume 2895 ofLNCS, pages 358–375. Springer, 2003.

20. M. Parigot. Proofs of strong normalisation for second order classical natural deduction.
Journal of Symbolic Logic, 62(4):1461–1479, 1997.

21. A. Pitts. Parametric polymorphism and operational equivalence.Mathematical Structures in
Computer Science, 10(3):321–359, 2000.

22. A. Pitts and I. Stark. Operational reasoning for functions with local state. In A. D. Gordon
and A. M. Pitts, editors,Higher Order Operational Techniques in Semantics, Publications of
the Newton Institute, pages 227–273. Cambridge University Press, 1998.

23. G. Plotkin. Lambda-definability in the full type hierarchy. In”To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism”, pages 367–373. Academic Press,
San Diego, 1980.

24. W. Tait. Intensional interpretation of functionals of finite type I.Journal of Symbolic Logic,
32, 1967.

A Proof

A.1 Proof of theorem 4.7

Whenp : E → B is a fibration,p ◦ − : [E, E] → [E, B] is also a fibration. Then an
endofunctorF overE is a lifting of an endofunctorG overB if and only if F is above
G ◦ p in the fibrationp ◦ −.

Let T , T ′ be strong monads overB, α : T → T ′ be a strong monad morphism
andṪ ′ be a strong monad overE which is a lifting ofT ′. We construct a monaḋT =
(Ṫ , η̇, µ̇, θ̇) together with a strong monad morphisṁα : Ṫ → Ṫ ′ which is Cartesian
aboveα.

– We define the endofunctoṙT : E → E to be the vertex(α ◦ p)∗Ṫ ′ of the following
Cartesian lifting ofα ◦ p in the fibrationp ◦ −:

(α ◦ p)∗Ṫ ′
(α◦p)(Ṫ ′) // Ṫ ′

T ◦ p
α◦p

// T ′ ◦ p

We defineα̇ = (α ◦ p)(Ṫ ′).

– We define the uniṫη and the multiplicatioṅµ by the morphisms obtained from the
universal property of the Cartesian morphismα̇ in the fibrationp ◦ −:

IdE

η̇
""

η̇′

!!

Ṫ ◦ Ṫ

µ̇
%%

µ̇′ • (α̇∗α̇)

##
Ṫ α̇

// Ṫ ′ Ṫ α̇
// Ṫ ′

p

η◦p
""EE

EE
EE

EE
E η′◦p

!!

T ◦ T ◦ p

µ◦p
%%JJJJJJJJJ (µ′ • (α∗α))◦p

##
T ◦ p

α◦p
// T ′ ◦ p T ◦ p

α◦p
// T ′ ◦ p

– For objectsX, Y in E above objectsI, J in B respectively, we define the strength
θ̇X,Y as follows:

X⊗̇Ṫ Y θ̇′X,Y ◦(X⊗̇α̇Y)

''θ̇X,Y %%
Ṫ (X⊗̇Y)

α̇X⊗̇Y

// Ṫ ′(X⊗̇Y)

I ⊗ TJ θ′I,J◦(I⊗αJ)

''θI,J &&LLLLLLLLLL

T (I ⊗ J)
αI⊗J

// T ′(I ⊗ J)

We can easily verify thaṫη, µ̇, θ̇ satisfy the law of strong monad using the fact thatp is
faithful (sincep is a preordered fibration). For example, to showµ̇X ◦ Ṫ (η̇X) = idX

for each objectX in E, we calculate:

p(µ̇X ◦ Ṫ (η̇X)) = µpX ◦ T (ηpX) = idpX = p(idX).

Sincep is faithful, we conclude thaṫµX ◦ Ṫ (η̇X) = idX .

The morphismα̇ is clearly a monad morphism from the construction ofη̇, µ̇, θ̇.

To see thaṫα is a Cartesian morphism, we consider a situation inMon(p) described
in the left diagram:

Ṫ ′′ β̇

""

Ṫ ′′

γ̇
##

β̇

%%
Ṫ α̇

// Ṫ ′ Ṫ α̇
// Ṫ ′

T ′′ β

""
γ

��@
@@

@@
@@

@ T ′′ ◦ p β◦p

%%
γ◦p

##HH
HH

HH
HH

H

T α
// T ′ T ◦ p

α◦p
// T ′ ◦ p

This situation induces the right diagram inp ◦ −. From the universal property oḟα,
we obtain a unique morphisṁγ : Ṫ ′′ → Ṫ aboveγ ◦ p satisfyingα̇ • γ̇ = β̇. To
verify thatγ̇ is a strong monad morphism, we use the universal property ofα̇. We show
γ̇ • η̇′′ = η̇ as an example. First,γ̇ • η̇′′ andη̇ are aboveη ◦ p in the fibrationp ◦ −.
Next, we have

α̇ • γ̇ • η̇′′ = β̇ • η̇′′ = η̇′ = α̇ • η̇

From the universal property oḟα, we haveγ̇ • η̇′′ = η̇. We can similarly verify the
other equations of the law of strong monad morphism. ut

A.2 Proof of theorem 5.1

(Sketch) LetT = (T, η, µ, θ) be a strong monad overB, K be a (finite) set and suppose
that we have a liftingṪk = (Ṫk, η̇k, µ̇k, θ̇k) of T for eachk ∈ K.

The fibred product̂̇T = (ˆ̇T, ˆ̇η, ˆ̇µ,
ˆ̇
θ) of Ṫk is given as follows.

– The functor part is defined bẏ̂TX =
∧

k∈K ṪkX. We writeπk
X : ˆ̇TX → ṪkX for

thek-th projection.
– We observe that for objectsX, Y in E and a morphismf : pX → pY in B, we

have the following natural isomorphism:

Ef (X, ˆ̇TY) ∼= EpX(X, f∗(ˆ̇TY)) ∼= EpX

(
X,

∧
k∈K

f∗Ṫk

)
∼=
∏
k∈K

Ef (X, ṪkY).

We writeφ for the right-to-left part of the above isomorphism. The unit, multipli-
cation and strength is then defined by:

ˆ̇ηX = φ〈(η̇k)X〉k∈K

ˆ̇µX = φ〈(µ̇k)X ◦ Ṫk(πk
X) ◦ πk

X〉k∈K

ˆ̇
θX,Y = φ〈(θ̇k)X,Y ◦ (X ⊗̇ πk

Y)〉k∈K

The reader can verify thaṫ̂T is indeed a strong monad, and is a fibred product of
{Ṫk}k∈K .

