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Abstract. A semantic formulation of Lindley and StarkKET-lifting is given.

We first illustrate our semantic formulation of tAeT -lifting in Set with sev-

eral examples, and apply it to the logical predicates for Moggi’'s computational
metalanguage. We then abstract the semahfielifting as the lifting of strong
monads across bifibrations with lifted symmetric monoidal closed structures.

1 Introduction

Logical predicates are a method for extracting submodels of the pure simply typed
lambda calculus X~ for short) by induction on type. Logical predicates are widely
applied to the reasoning of the properties\of [23, 9, 24, 16].

We are interested in extending logical predicateMtiggi’s computational meta-
language(\,,,; for short) [18], which has additional typ&% calledmonadic typeTo
do so, we need to consider a scheme to calculate a predicate dttyfjpem a predicate
at typer. Recently, Lindley and Stark develop tleapfrog metho@nd show the strong
normalisation of),,,; in the style of Tait-Girard reducibility [12, 11]. The novelty of
the leapfrog method is the operation called -lifting, which calculates a reducibility
predicate at typ&'r from a reducibility predicate at type

However, Lindley and Stark'§ T-lifting is defined with respect to the syntactic
structure of),,,;, and is designed for the proof of the strong normalisation. This paper
attempts to provide a semantic aspect of tfieir-lifting. The main contribution of this
paper is twofolds:

1. We provide a semantic formulation of Lindley and Stark’s-lifting in set theory
(section 3). This formulation is carried out by finding a semantic counterpart for
each of the building block inr T-lifting. We instanciateT T-liftings with well-
known strong monads ovéSet, and show that the logical predicates using the
semanticT T-lifting implies thebasic lemmaf logical predicates.

2. We re-formulate the above semanticl -lifting as a construction ofiftings of
strong monads, and give a categorical account of this construction within the frame-
work of fibred category theory (section 4). We then show that the above semantic
TT-lifting and Abadi’'s T T-closure operation are instancesTof -lifting.



2 Preliminaries

Moggi’'s Computational Metalanguage

We begin with the syntax oX,,;. We define the set of typéByp,,,; by the following
BNF (we consider a single base typ#or simplicity):

Typ,; d7u=blT=71]|TT.

Monadic typesI'r are for the programs yielding values of typewith some com-
putational effect. Atyping context{ranged over byi") is simply a finite sequence of
variable-type pairs without any duplication of variables.

The calculus\,,; has two new term constructions related to monadic typesand
“let ™ be M in N”. Their typing rules are the following:

T'EM:r I'tM:Tr INx:7FN:T7T
'-[M]:Tr I'tletz"be MinN:T7

The term[M] expresses the value 8f involving the trivial computational effect. The

term “let ™ be M in N” expresses a sequential computatiolbfand V; the termM

is first computed, its value is then bounditband next the ternV is computed.
Equational theory ol,,,; extends3n axioms of A= with the following axioms:

let 27 be [M]in N = N[M/z] (T.5)
letz" be Min[z"] =M (T.n)
let 2™ be (lety™ be Lin M)in N =lety” be Linleta” be Min N (T.assoc)

Categorical Semantics of\,,,;

A categorical semantics of,,; is given in a Cartesian closed categ@hgquipped with
a strong monad’ = (7,7, u,0). We omit the formal definition of strong monads;
see e.g. [18]. For a morphisth : A — TB in C, we write f# for the morphism
upoTf:TA— TB.

Let B be an object inC. We first assign to each type an object[r] in C by
induction on type:

Bl=B, lr=71=[1=I["1 I[T7]=T[l
We extend this assignment to typing contexts by
[x1 71, xn ] =[] x -+ x [7]-

The semantics aof,,,; in C is an extension of the standard categorical semantias of
with the following rules:

— For a well-formed ternT” - [M] : T'r, we define
[[M]] = ngrq o [M].
— For a well-formed ternT” - let 2™ be M in N : T/, we define

[[Iet x” be M in N]] = [[N]]# o 9[[1"]].,[[7]] o <id[[pﬂ, [[Mﬂ>



3 A Semantic Formulation of T T -lifting

In [12], Lindley and Stark prove the strong normalisation)af; by extending the
reducibility predicate technique. The novelty of their method is the operation called
TT-lifting, which calculates a reducibility predicate at a monadic type from that at an
ordinary type.

Definition 3.1 ([12], section 3.1).

1. We define the set tdw continuation®y the following BNF:
K:=1d| Ko (z".N)

where the notatior(z”.N) indicates that/V is a term with a distinguished free
variablez™.

A judgement for a raw continuation is a tripler ¢ K : T'v'. Raw continuations
are typed by the following rules:

z:7THEN:T7 Tt b+ K:TT"
Trreld:TT Trre Ko (z™.N):T7"

We writeT' ¢ K to mean that there exists a (unique) type’ such thatl'r ¢
K : T’ is derived from the above rules.
2. We define aapplicationK @M of a termM to a continuationX by

Id@M =M, (Ko (z".N))QM = KQ(letz” be M in N).

3. Given a sef of terms of type-, we define a seP " " of terms of typd'r by

P' ={Tr+c K |YM € P. KQ[M] € SN}
P'T={M:T7|VK ¢ P" . KQM € SN}

whereS N is the set of strongly normalising terms.

From this point, we leZ” = (T,n, u,d) be a strong monad ovéet, and fix a
categorical semantics of,,; with respect to the strong mon&dand the evident CCC
structure inSet. We give a semantic formulation of the syntactid -lifting by finding
semantic counterparts of continuations, applications and th€/8ef his formulation
is carried out with respect to the strong morfadiVe introduce the following notation:
for subsetsY C IandY C J,by X = Y we meanthe subséf |Vz € X . f(z) € Y}
of I = J.

To simplify the situation, we assume that all continuations in definition 3.1 have the
same typd p (this restriction will be relaxed in section 5). We IBt= [p].

Continuation We formulate a continuation as a function

felr]=TR.



We explain the idea of this formulation below. We notice that a continutioh
Ido (z7.M) : Tpis equivalent to a contex¢t ™ be — in M, and an application
of a term to the continuation is equivalent to plugging the term in the hole of the
context. The essential information of the context is the badyand it has the
following typing:

x:ThHM:Tp.

Our formulation represents this information as a functfoa [7] = T'R.

Application We define an application of an element [T'r] to a continuationf €
[r] = TRtobef#z.

The SetSN The setSN is hard-coded in the definition ™ and PT T since the
syntacticT T-lifting is designed for the proof of the strong normalisation\qf;.
We replaceS N with some subset C T'R, and callS aresult predicate
We also relax the condition that the sRtis given by[p] with some typep; we
simply allow R to be any set and calt aresult type

Once continuations, applications and the S&f are semantically formulated, it is
straightforward to defin® " andP " . We summarise the above discussion as follows:

Definition 3.2. Let R be a set (calledesult typg and.S C TR be a subset (called
result predicate

1. Acontinuationis a functionf € [r] = TR.
2. We define aapplicationof = € [T'7] to a continuationf € [r] = TR to be f#z.
3. LetP C [r] be a subset. We define a subBet’ C [T'r] by

P' ={fer]=TR|VzcP.f(z)eS}=P=S
P'T ={xec[T7]|VfeP".f#x)ecS}
which is equivalent to
P'T ={ze[I7]|VfeP=S.f#()e S}
We call the operatiori—) " T the T T-lifting of 7 with R and.S C TR.

We can also consider the semanti@ -lifting for binary relations binary T T -lifting
for short) over the semantics af,,;. Let R be a set and C (T'R)? be a subset. A
continuation is a paif f, g) of functions from[r] to TR. An application of(x,y) €
[T7]? to a continuatior(f, g) is defined to be f#x, g*v). For a binary relatior® C
[7]?, we defineP T T as follows:

{(f,9) € ([r] = TR)? | V(z,y) € P . (fz,gy) € S}
{(z,y) € [T7]* | V(f,9) € PT . (f*z,9%y) € S}.

PT
PTT

Examples of SemanticT T -liftings

An interesting point is that we can obtainT -liftings for various strong monads and
result type/predicate pairs. We see some concrete examples of the semasifiting
below.



Example 3.3.We consider théfting monad7 , which simply adjoins an extra element
| to a given set. We calculateTaT -lifting of 7, with the following data:

— The result typeR is {*} (thusT | R = {x, L}).
— The result predicaté is {x}.

For a subseP C [7], we haveP™ " = P.

Example 3.4.We consider thestate monad/, whose functor part is given by, =
M = I x M for some sef\/. We letMy; C M be a subset and calculatéld -lifting
of 7, with the following data:

— The result typeR is some set.
— The result predicat® is My = R x M, the set of functiong € T, R such that
V.TEMo.f(.’E)EMOXR.

For a subseP C [r], we expand the definition &' " and obtain
P'T ={feT,r]|VgePxMy=Rx My.gofe My=Rx M}
Infact, PT T can be characterised as follows:

PTT_ M0:>PXMO(QQRXMOgRXM)
T Ts[7] (otherwise

Below we prove the first case of this characterisation; the second case is trivial. We first
prove

PXMQZ{iE[[T]]XM|VgEPXM0=.>RXMQ.g(i)€RXM()}.

(€) Easy. D) Letx ¢ P x M,. From the assumption oR x M,, we can take two
elementss € R x My ands’ € (R x M)\(R x My). We then define the following
functiong € [7] x M = R x M:

s (x € P x M)
g<x):{s’(m¢Png)

which is clearly included inP x My = R x M,. Howeverg(z) € R x My, SO we
conclude that: ¢ (r.h.s.). Therefore

fEM():}PXMO
<= Vo e My.Vge Px My=Rx My.g(f(x)) € Rx M,

— feP'T.

Example 3.5.We calculate a binary T-lifting of the lifting monad7’, with the fol-
lowing data:

— The result typeR is a one-point sef«}. We haveT | R = {L, x}.
— The result predicats C (T  R)?is {(z,y) € (T LR)? | (z =% = y=x)}.



For a subseP C [7], we obtainP™ " = PU {(L, 1)}.

Example 3.6.We consider thdinite powerset monad,, whose functor part is given
by T,,(X) = {# C X | z is afinite se}. We calculate a binary T-lifting wf 7, with
the following data:

— The result typeR is a one-point sefx}. We havel, R = {0, R}.
— The result predicaté C (T,R)?is {(z,y) € (T,R)* |z = R = y = R}.

We identify a functionf € [7] = T,R and a subset (written with the capital letter of
the function)F' = {x € [7] | f(z) = R} C [r]. Under this identification, for each
z € T,[r], we have

f#fz =R «<— Ufe:R < decx.ecF.

ecx
For a subseP C [r], we expand the definition a? " T and obtain

P'T ={(p,q) € (T,[7])*|VF,GC[r] .- V(z,y) EP .2 € F = y€G) =
Veep.ee F = 3 €q.¢ € G}.

This is not intuitive, but interestingly we have the following characterisatioR of :
P ={(p,q) |Vaep.3FbEq. (a,b) € P}. Q)

This appears in the pattern of definipge-bisimulation relatiorin concurrency.

The rest of this example is the proof of equationd) Let (p,q) € PT T anda € p.
We show3b € ¢ . (a,b) € P. We supply{a} and{b | (a,b) € P} to F andG in the
definition of (p,¢) € PTT. We obtain

M(z,y) e P.x =a = (a,y) € P})
= (Ve€p.e=a = e’ €q.(a,e) e P})

whose premise part is trivially true. By lettingbe a in the conclusion part of the
above formula, we obtaifle’ € ¢ . (a,¢’) € P. (2) We takep, ¢ € T,[7] such that
Vaep.3dbeq. (a,b) € P.LetF,G C [r], e € pand assum&(z,y) € P .z €
F = y € G (we call this assumption (*)) and € F. We show3de’ € ¢ . ¢’ € G.
Sincee € p, there existg’ € ¢ such thate,e’) € P. From (*), we havee € F —
e’ € G. Thuse’ gives awitness ofie’ € ¢ . ¢’ € G.

Logical Predicates for A\,,,; Using T T -lifting

The semanticT T-lifting constructs a subset di'7] from a subset ofr]. This con-
struction is suitable for extending the conceplogfical predicatego \,,;. We show that
a logical predicate using the semantid -lifting extract a submodel ok,,,;. We fix a
result typeR and a result predicaté C TR, and consider thé T-lifting determined
by R andS.



Definition 3.7. A T T-logical predicatés a type-indexed familyP” C [7]}-ctyp,
of subsets satisfying

PTT:(PT)TT7 PT:>T/:PT:‘>PT/'
For a typing contex!” = z; : 74, - , @, : T, by PI we mean the produd®] x - - - x
P7, which is a subset dfI"].

Theorem 3.8 (Basic Lemma)Let P be aT T-logical predicate. For any well-formed
termI" - M : 7, we havglM] € PI' = P,

Proof. We show the following properties on tAeT -lifting. Let X C [ andY C J be
subsets.

1.7 € X=XTT. Letx € X. Then for anyf € X = S, we havef# (n;(z)) =
f(x) € S. Thereforen;(z) € X' 7.

2.p € (XTHTT = XTT etz €¢ (XTH)TT andf € X = S. We show
f#(ur(z)) € S. Itis easy to show that € X = S implies f# € X7 = S,
hence(f#)# € (XTT)TT = S. Notice thatf# (ur(x)) = (f#)#(x). Therefore
f#(ur(2)) € 8.

3.0, € XxYTT=(XxY) T.Letac X,beY T andf € X xY = 5. We
show f# o 0r.7(a,b) € S. We note that the strength ; is given byf; ;(a,b) =
T(\b € B . (a,b))(b) asSet is a well-pointed category (see e.g. [18]). Thitso
01 5(a,b) = (\b € B . f(a,b))#(b). SinceXb € B . f(a,b) € Y = S, for each
beY'T wehave(\b € B. f(a,b))#(b) € S. Thereforef# o 0; ;(a,b) € S

4. fe X =Y impliesTf € X'TT =Y TT Letx ¢ X"T andg € Y = S. We
showg# (T f(z)) = (g o f)#(x) € S. This holds fromg o f € X = S and the
definition ofz € X TT.

5 From2and4fc X =Y T impliesf* ¢ XTT Y TT,

We prove the theorem by induction on derivation of a well-formed term M : 7.
We omit the cases for the syntax constructions inherited fidm see e.g. [2]. The
cases new ta,,,; is the following.

— Casel' + [M] : Tr. From IH, we have[M] : PI' = PT. From 1, we have
[HM]]] = 77[[7.]] o [[M]] : PF = PTT.

— Casel' F let ™ be M in N : T’ with well-formed termd”" - M : Trandl’, z :
7 N :T7 . FromIH,[M] : PI' = PT7and[N] : PI'xP™ = PT™  From 3 and
5, we have N]# oy 7 : PT x PT™ = P77 Thereforeflet 2™ be M in N] =
[NT# 0 017y © (idgry, [M]) : PT = PT7.

O

4 A Categorical Generalisation of T T -lifting

In the proof of theorem 3.8, we notice that the operatien’ " resembles an endofunc-
tor (claim 4) equipped with morphisms constituting a strong monad (claim 1,2,3). It is



indeed a strong monad over the categbnb(Set) of subsets and functions respect-
ing subsets (example 4.3). Furthermore, the strong monad " makes the following
diagram commute:

7)TT

Sub(Set) —> Sub(Set)

Set ————— Set

wherer : Sub(Set) — Set is the evident forgetful functor. This suggests that we can
understand the semanficT -lifting as aconstructionof such a strong monad frofh.

We give a categorical generalisation of this construction using fibrations and sym-
metric monoidal closed structures. We replaosith a bifibrationp : E — B equipped
with a lifted symmetric monoidal closed structure (definition 4.2). We then capture the
semanticT T-lifting as a construction of a strong monad o&from that overB.

We borrow some notations from 2-category theory. We wsandx for the vertical
and horizontal compositions of natural transformations, respectively. We overload
with the notation for the composition of functors, as well as for the composition of a
functor and a natural transformation.

4.1 Preliminaries

Symmetric Monoidal Close Category We assume that the reader is familiar with
symmetric monoidal closed categorid&¥e reserve symbolk ®, — for unit objects,
tensor products and exponentialssyimmetric monoidal functas a functorF' : C —

D between symmetric monoidal categoriésD together with morphisms; : Ip —
FIc andmxy : FX ®@p FY — F(X ®c Y) satisfying certain coherence laws (see
e.g. [14]).

Example 4.1. 1. The categoryet has a symmetric monoidal closed structure given
by a chosen CCC structure.

2. The categorywCPPO of pointedw-CPOs and strici-continuous functions has
a symmetric monoidal closed structure given by Sierpinski spgaee { L C T},
smash products and strictcontinuous function spaces.

3. The functorx : (WCPPO)? — Set sending a paifX,Y") of pointedw-CPOs to
the binary produc x Y of carrier sets is a symmetric monoidal functor.

Strong Monad A strong monadl” over a symmetric monoidal categadByis a tuple
(T, n, i, 0) such that(T, n, 1) is an ordinary monad ové andfxy : X @ TY —
T(X ® Y) is a natural transformation callédnsorial strengthsatisfying certain co-
herence laws (see e.g. [10]). #trong monad morphisfrom 7 = (T,n, u,0) to
T'=(T',n, 1/, 0") is a natural transformatiom : T — T" satisfying

p e (oxo)=cepu n=cen Oxyo(X®oy)=oxeyolxy.



Fibration We assume that the reader is familiar with preliminaries on fibration. A good
reference is [7].

Definition 4.2. A functorp : E — B is abifibration with a lifted symmetric monoidal
closed structuré# p is a preordered bifibrationt andB are symmetric monoidal closed
categories ang strictly preserves the symmetric monoidal closed structut@. ikvVe
use dot notatiod, ® , —o to denote the symmetric monoidal closed structuré in
which are sent to the symmetric monoidal closed struduge — in B by p.

Example 4.3.We define a categoryub(Set) by the following data: an object is a pair
(X,TI) whereX is a subset of, and a morphisms froroX, I) to (Y, J) is a function
in X = Y. The categorBub(Set) has the following CCC structure:

1=({+},{x})
(X, 1) x (V,J)=({(i,j) i€ XAjeY}IxJ)
(X, )= (Y, ))=(X=>Y,I=J).

(here the reader should not worry about the confusion caused by a clash of the no-
tation = ). This structure is strictly preserved by the evident forgetful funator
Sub(Set) — Set, which is actually a partial-order bifibration. Thereforés a bifi-
bration with a lifted symmetric monoidal closed structure.

One good property of the class of bifibrations with lifted symmetric monoidal closed
structures is the closure under change-of-base along symmetric monoidal functors.

Proposition 4.4 (e.g. [5]).Letp : E — B be a bifibration with a lifted symmetric
monoidal closed structure ankl : C — B be a symmetric monoidal functor. Then the
change-of-base g along F' is again a bifibration with a lifted symmetric monoidal
closed structure.

Example 4.5.We consider the following change-of-basenoélong x:

Rel(wCPPO) —— Sub(Set)

) |
(WCPPO)2 ﬁ' Set

From proposition 4.45 is again a bifibration with a lifted symmetric monoidal closed
structure. An object iRel(wCPPO) is a triple(X, I, J) wherel, J are pointeduv-
CPOs andX is an arbitrary subset df x J, that is, a binary relation betwedrand.J.

A morphism inRel(wCPPO) from (X, I, J)to (X', I’, J')isapair(f: I — I',g:

J — J') of strictw-continuous functions such thétx g € X = X'. We can similarly
derive the category of-ary relations between-CPOs by change-of-base.

4.2 T T-lifting as a Construction of Liftings of Strong Monads

We fix a bifibrationp : E — B with a lifted symmetric monoidal closed structure.
We define a fibration ofifted strong monadsvhich is suitable for characterising the
T T-lifting.



Definition 4.6. 1. We say that a strong mon&d = (7,7, 1, 9) overE is alifting of
a strong monad” = (7', n, u, ) overB if the following holds:

pol =Top, pon=mnop, pop=pop, pllxy)="0pxpy.

2. We writeMon(B) for the category of strong monads ovBrand strong monad
morphisms between them.
3. We define a categoiylon,(E) using the following data:

— An object inMon,;(E) is a pair of a strong monad overE and a strong
monad7 overB such that7 is a lifting of 7. We sometimes represent an ob-
ject in Mon, (EE) simply by a strong monad ov&rwhen its underlying strong
monad ovefB is clear from the context.

— A morphism inMon,(E) is a pair of strong monad morphisnas: T —1T
anda : 7 — 7' suchthap o & = a o p.

4. We writeMon(p) : Mon;(E) — Mon(B) for the following forgetful functor:

Mon(p)(7,7) =7, Mon(p)(d,a) = a.
Theorem 4.7. Mon(p) is a fibration.
Proof. See appendix A.1 O

We are ready to give a categorical account of the semdntidifting. We capture
the T T-lifting as a construction of a lifting of a strong monad ofefrom that overB.
For this constructiorgontinuation monadglay a crucial role. We observe the following
facts.

— For each objecf in B, an endofunctof— — I) — I overB is a strong monad
(called continuation monad Particularly, for a strong mona@ over B and an
objectR in B, we have a continuation mongd- — T'R) — TR and a strong
monad morphism

0: T——>(——TR) —TR

whose component at an objdcin B is given by the following transposition (object
annotations are omitted):

TI® (I —TR)—> (I -TR) &@TI —*>T((I - TR) ® 1) —~ > TR

o1 =X@%0fos): T ——= (I =TR) - TR

wheres and@ are a symmetry and an evaluation morphismB,inespectively.

— Let S be an object i abovel R and consider a continuation mon@d —o S) — S
overE. Itis alifting of (— — T'R) — T'R sincep strictly preserves the symmetric
monoidal closed structure In.

The following diagram summarises these factdlion(p):
(——8)—>S8 Mon,; (E)
lMon(z))
T —(——TR) —TR Mon(B)



We now consider a Cartesian lifting of

o*((— =0 8) <0 §) T (= 0 §) 0 8 Mon, (E)
iMOH(P)
T - (— —o0 TR) — TR MOH(B)

We claim that the vertex*((— —o S) —o S), which is by definition a lifting of7,
gives theT T-lifting of 7. There are two sets of evidence supporting our claim.

— The set-theoreticl T-lifting in section 3 is an instance of this generaliséd -
lifting. We work in the fibrationr : Sub(Set) — Set from example 4.3. Subse-
quently, for any strong mondfl and subsetX C [ andS C TR, we have:

F(X=8)=9S)={zxeTl|oc"(z)e (X=9)=9)}
={zeTI|VfeX=>S5.0%()(f) € S}
={2eTI|VfeX=>S. ffeecS)
_xTT

— Let D, E be pointedv-CPOs andr be an arbitrary subset @ x FE. In [1], Abadi
considered the following closure operation) ' T as a semantic abstraction of
Pitts’ syntacticT T-closure operation [21]:

={(f,9) €[D -1 O] x [E— O]|Y(z,y) € R. fx = gy}
{(z,y) e Dx E|V(f,9) € R" . fx = gy}

where[— — —] denotes strici-continuous function spaces.
The above closure operation is an instance of our semantidifting. We work
in the fibrationmy : Rel(WCPPO) — (wCPPO)? from example 4.5. Theé T-
lifting of the identity monadover (wWCPPO)? with the following data coincides
with Abadi’s T T-closure operation.

e TheresulttypeRis (O, O).

e The result predicat§'is ({(L, L), (T, T)}, (0, 0)).

RT
RTT

We write7 " " for o*((— —o ) =0 9).

5 Multiple Result Types

We relax the restriction we imposed on the result type in section 3 L& — B be a
bifibration with a lifted symmetric monoidal closed structure &ntle a strong monad
overB.

Theorem 5.1. If p has fibred (finite/small) products, then so dddsn(p).

Proof. See appendix A.2. O



Let {(Sk, Ri) }rex be a set of pairs of objects andB such thap Sy, = TRy, for all
k € K. For eachk € K, the pair(Si, Ry) determines & T-lifting 7 ' "+, They are all
liftings of 7, so we consider the following fibred productiion, (E):

/\ TTTk

keK

which is again a lifting of7 .

Example 5.2.We flip the relations in example 3.6 and obtain the followiAgT -lifting:
P ={(p.q) |VbEq.Tacp.(ab) € P}

The intersection

PTTAPTT ={(p,q)| (Vb€ q.TFacp.(a,b) € P)A(Nacp.TbEq.(a,b) € P)}

coincides with the pattern of bisimulation.

6 Related Work

This work has been inspired by Lindley and Stark’s paper [12] and Lindley’s thesis
[11]. Lindley and Stark introduce the syntacticr -lifting for \,,; and prove the strong
normalisation of\,,;. In the latter part of [12], they also discuss an extension of the
syntacticT T-lifting to other types such as sum types. However, this extension has not
been covered here.

Operations which are similar to Lindley and Stark’s -lifting have previously ap-
peared in several other studies. Some examples of these studies are: the reducibility
technique for linear logic by Girard [4], Parigot's work on the second order classical
natural deduction [20], PittsT T-closure operation [21] and Melis and Vouillon's
biorthogonality[15]. In addition, Abadi gives a semantic formulation of PitisT-
closure operation and discusses the relationship betweéeslosed relations (those
which satisfyR = R" ") and admissibility [1]. TheTl T-closed relations are applied to
the verification of the correctness of program transformations [8, 19], and to the char-
acterisation of the observational equivalence for a language with local states [22].

Categorical study of logical predicates established in [13, 17] is generalised by Her-
mida using fibrational category theory [6]. The key observation of his generalisation is
that logical predicates with respect to a fibratipn E — B employ a CCC structure
in IE which is strictly preserved by. This observation leads us to consider liftings of
strong monads and bifibrations with lifted symmetric monoidal closed structures.

In general, there are many liftings of a strong monad. In [3], Larrecq, Lasota and
Nowak propose a construction method of liftings of strong monads using factorisation
systems. Their method appears to be fundamentally different from our semantic
lifting. However, some of their examples of liftings of strong monads Sedrcan also
be calculated with our method. It will be interesting to establish a formal relationship
between their lifting of strong monads and the semanticlifting developed by us.



7 Conclusion

We semantically formulated Lindley and StarR'S -lifting and showed that it provides
a satisfactory construction method of logical predicatesXgy. We also examined
several examples of the semantid -lifting of strong monads oveSet.

We then categorically re-formulated tAeT -lifting as a lifting of a monad along
a bifibration with a symmetric monoidal closed structure using continuation monads.
This generalisation subsumes the set-theoretielifting in section 3 and Abadi’s T-
lifting.

Acknowledgement

| am grateful to Don Sannella, Samuel Lindley, Masahito Hasegawa, Miki Tanaka and
anonymous referees for their valuable advice. Most of this work was carried out in
Edinburgh university under an LFCS studentship.

References

=

M. Abadi. T T-closed relations and admissibilitySCS 10(3):313-320, 2000.

R. Amadio and P.-L. Curieldomains and Lambda-Calcuykolume 46 ofCambridge Tracts

in Theoretical Computer SciencEambridge University Press, 1998.

3. J. G.-Larrecq, S. Lasota, and D. Nowak. Logical relations for monadic typ&otn CSL.
volume 2471 oLNCS pages 553-568. Springer, 2002.

4. J.Y. Girard. Linear logicTheor. Comp. Sgi50:1-102, 1987.

5. M. Hasegawa. Categorical glueing and logical predicates for models of linear logic. Tech-
nical Report RIMS-1223, Research Institute for Mathematical Sciences, Kyoto University,
1999.

6. C. Hermida.Fibrations, Logical Predicates and Indeterminan®hD thesis, University of
Edinburgh, 1993.

7. B. JacobsCategorical Logic and Type Thearilsevier, 1999.

. P. Johann. Short cut fusion is correttFunct. Program.13(4):797-814, 2003.

9. A.Jungand J. Tiuryn. A new characterization of lambda definabilitrdrc. TLCA volume

664 of LNCS pages 245-257. Springer, 1993.

10. A. Kock. Strong functors and monoidal mona#schiv der Mathematik23:113-120, 1970.

11. S. Lindley.Normalisation by Evaluation in the Compilation of Typed Functional Program-
ming LanguagesPhD thesis, University of Edinburgh, 2004.

12. S. Lindley and I. Stark. Reducibility andT -lifting for computation types. ITLCA pages
262-277, 2005.

13. Q. Ma and J. Reynolds. Types, abstractions, and parametric polymorphism, paPr@c.In
MFPS 1991 volume 598 o NCS pages 1-40. Springer, 1992.

14. S. MaclLane. Categories for the Working Mathematician (Second Editimojume 5 of
Graduate Texts in MathematicSpringer, 1998.

15. P.-A. Mellés and J. Vouillon. Recursive polymorphic types and parametricity in an opera-

tional framework. InProc. LICS 2005 To appear.

16. J. Mitchell. Representation independence and data abstractiBnodnPOPL, pages 263—

276, 1986.
17. J. Mitchell and A. Scedrov. Notes on sconing and relator®raic. CSL 1992volume 702
of LNCS pages 352—378. Springer, 1993.

n

o



18.

19.

20.

21.

22.

23.

24.

A

E. Moggi. Notions of computation and monabigormation and Computatiqr93(1):55-92,

1991.

S. Nishimura. Correctness of a higher-order removal transformation through a relational
reasoning. IMAPLAS volume 2895 of NCS pages 358-375. Springer, 2003.

M. Parigot. Proofs of strong normalisation for second order classical natural deduction.
Journal of Symbolic Logi62(4):1461-1479, 1997.

A. Pitts. Parametric polymorphism and operational equivaldviathematical Structures in
Computer Science 0(3):321-359, 2000.

A. Pitts and I. Stark. Operational reasoning for functions with local state. In A. D. Gordon
and A. M. Pitts, editorgiigher Order Operational Techniques in Semantksblications of

the Newton Institute, pages 227-273. Cambridge University Press, 1998.

G. Plotkin. Lambda-definability in the full type hierarchy. "Ifo H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalisngages 367—-373. Academic Press,
San Diego, 1980.

W. Tait. Intensional interpretation of functionals of finite typddurnal of Symbolic Logic

32, 1967.

Proof

A.1 Proof of theorem 4.7

Whenp : E — B is a fibration,p o — : [E,E] — [E,B] is also a fibration. Then an
endofunctorF’ overE is a lifting of an endofunctoé overB if and only if F' is above
G o p in the fibrationp o —.

Let 7,7' be strong monads ové#, o : 7 — 7' be a strong monad morphism

andT/ be a strong monad ové which is a lifting of 7. We construct a monad =
(T, n, f1,0) together with a strong monad morphism: 7 — 7’ which is Cartesian
abovea.

— We define the endofunctdr : E — E to be the vertexa o p)*1” of the following

Cartesian lifting ofx o p in the fibrationp o —:

(ao p)*T’ L e =T

Top———rg—>1T0p

We defines = (a0 p)(1").



— We define the unify and the multiplication: by the morphisms obtained from the
universal property of the Cartesian morphiénn the fibrationp o —:

Idg TOT

T——F 1T

b n'op TOTOp " o (axa))op

TOpW)T/op TopTW)T/op

— For objectsX, Y in E above objectd, J in B respectively, we define the strength
0,y as follows:

0% yo(X®dy)

X®TY

éx,yrrrrr”'—k
T(X®Y) — T'(X®Y)

Ax QY

I®TJ 07 ;jo(IQay)
;?J\

TI®J) ———=T'(I®J)
aAreJ

We can easily verify thay, 1, 0 satisfy the law of strong monad using the fact that
faithful (sincep is a preordered fibration). For example, to shaw o T'(nx) = idx
for each objecX in E, we calculate:

p(fix o T(f)X)) = ppx o T'(npx) = idpx = p(idx).

Sincep is faithful, we conclude thatx o T'(1x) = idx.

The morphismy is clearly a monad morphism from the constructionjofi, 6.



To see thatv is a Cartesian morphism, we consider a situatidvlion(p) described
in the left diagram:

T
T// ,6 Op
\N\ \\
T T’ Top T'op

This situation induces the right diagram prno —. From the universal property of,
we obtain a unique morphism : 7" — T abovey o p satisfyinga: e 4 = 3. To
verify that+ is a strong monad morphism, we use the universal propery dfe show
4 e 7 =1 as an example. First, e 7" ands are above) o p in the fibrationp o —.
Next, we have

d.’y.f]/l:ﬁ..ﬁ//:ﬁ/:d'ﬁ
From the universal property a@f, we havey e 7/ = 1. We can similarly verify the
other equations of the law of strong monad morphism. O

A.2 Proof of theorem 5.1
(Sketch) LetZ = (T, n, u, ) be a strong monad ové, K be a (finite) set and suppose
that we have a I|ft|nng = (Tk,nk,uk, ek) of 7 for eachk € K.
The fibred producﬂ' (T,n, L, ) of 7, is given as follows.
— The functor part is defined bi?X = Niex T.X. We writew’g( : f“X — T X for
the k-th projection.

— We observe that for object¥, Y in [E and a morphisny : pX — pY in B, we
have the following natural isomorphism:

Ef(X,TY) 2 E,x (X, f*(TY)) = < A J Tk) ~ [ Es(x. 1Y)

keK keK
We write ¢ for the right-to-left part of the above isomorphism. The unit, multipli-
cation and strength is then defined by:
nx = (k) x ) rex
fix = &((im)x o Ti(mk) o m )hex
Oxy = ¢{(0r)x,y o (X & 75 ) ker

The reader can verify tha% is indeed a strong monad, and is a fibred product of
{Ti trer-



