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Abstract. The field of stochastic optimization studies decision making
under uncertainty, when only probabilistic information about the future
is available. Finding approximate solutions to well-studied optimization
problems (such as Steiner tree, Vertex Cover, and Facility Location, to
name but a few) presents new challenges when investigated in this frame-
work, which has promoted much research in approximation algorithms.

There has been much interest in optimization problems in the setting
of two-stage stochastic optimization with recourse, which can be para-
phrased as follows: On the first day (Monday), we know a probability
distribution π from which client demands will be drawn on Tuesday,
and are allowed to make preliminary investments (e.g., installing links,
opening facilities) towards meeting this future demand. On Tuesday, the
actual requirements are revealed (drawn from the same distribution π)
and we must purchase enough additional equipment to satisfy these de-
mands; however, these purchases are now made at an inflated cost. In
a recent paper [8], we proposed the Boosted Sampling framework which
converted an approximation algorithm A for an optimization problem Π
into one for the stochastic version of Π (provided A satisfied certain
technical conditions).

In this paper, we give two generalizations of this Boosted Sampling frame-
work: Firstly, we show that a natural extension of the framework works
in a general k-stage setting, where information about the future is grad-
ually revealed in several stages and we are allowed to take (increasingly
expensive) corrective actions in each stage. We use these to give approxi-
mation algorithms for k-stage Steiner Tree, Facility Location and Vertex
Cover.

? Supported in part by NSF CAREER award CCF-0448095 and an Alfred P. Sloan
Fellowship.

?? Supported by NSF grant EIA 02-05116.
? ? ? Supported in part by NSF grant CCR-0105548 and ITR grant CCR-0122581.



Furthermore, the Boosted Sampling framework of [8] requires the infla-
tion parameter specifying the increase in cost of future actions be in-
dependent of the distribution π. In this paper, we show how to extend
the framework to the case where this inflation parameter is arbitrarily
correlated with the client set S.

1 Introduction

Many problems in planning involve making decisions under uncertainity that
unravels in several stages. Demand for new services such as cable television and
broadband Internet access originate over time, leading to interesting questions in
the general area of installing infrastructure to support demand that evolves over
time. For instance, a communications company may want to solve the problem
of constructing a network to serve demands as they arise but also keep potential
future growth in hot-spots in mind while making investments in costly optic fiber
cables. While traditional ways to solve such problems involve casting them as
network loading and network expansion problems in each stage and solving for
them sequentially, advances in forecasting methods have made a more integrated
approach feasible: with the availability of forecasts about how future demands
evolve, it is now preferable to use the framework of multistage stochastic opti-
mization with recourse to model such problems.

Before we talk about the multistage optimization, let us describe the basic
ideas via the example of the two-stage stochastic Steiner tree problem: Given
a metric space with a root node, the Steiner tree problem is to find a mini-
mum length tree that connects the root to a set of specified terminals S. In the
two-stage stochastic version considered recently by several authors [8, 11, 20, 9],
information about the set of terminals S is revealed only in the second stage
while the probability distribution π from which this set is drawn known in the
first stage (either explicitly [11, 20, 9], or as a black box from which one can sam-
ple efficiently [8]). One can now purchase some edges F1 in the first stage—and
once the set of terminals S ⊆ V is revealed, one can buy some more edges F2(S)
so that F1 ∪ F2(S) contains a rooted tree spanning S. The goal is to minimize
the cost of F1 plus the expected cost of the edges F2. Note however that the
edges purchased in the second stage F2 are costlier by a factor of σ > 1; it is
this that motivates the purchase of some anticipatory edges F1 in an optimal
solution. This is precisely the model that has been studied in the papers [8, 11,
20, 9]. In this paper, we will consider the following k-stage problem, and will
give a 2k-approximation for this problem. (Details of results for other problems
appear in Section 1.1.)

The k-stage Problem. In the k-stage problem, we are allowed to buy a set of
edges in each stage to augment our current solution in reaction to the updated
information received in that stage in the form of a signal ; however, the cost of
buying any edge increases with each stage. Let us use σi to denote the inflation
factor of stage i; i.e., how much more expensive each edge is in comparison to
stage i−1. Assume σ1 = 1; hence purchasing an edge e in stage i costs ce

∏i

j=1 σi.



We work with the assumption that costs are non-decreasing, which corresponds
to σi ≥ 1.

– At the beginning of the i-th stage (where 1 ≤ i ≤ k − 1), we receive a signal
si that represents the information gained about future terminals that will
arise. After this observation si, we know that future signals, as well as the
set S of eventual terminals, will come from a revised distribution conditioned
on seeing this signal. After observing the signal si, we can purchase some
more edges Fi at cost

∏i

j=1 σjc(Fi).
– Finally, in the k-th stage we observe the realization of the random variable

S = S of terminals, and have to buy the final set Fk so that ∪k
i=1Fk is a

Steiner tree spanning S. Our goal is to minimize the expected cost incurred
in all stages together, namely

E[

k∑

i=1

(
∏

j≤i

σj) c(Fi) ]. (1)

This multistage framework can be naturally extended to model problems
like Vertex Cover and Facility Location as well; we give the formal definitions
in Section 2. We then extend the Boosted Sampling framework from [8] to the
multistage situation, and use this to give approximation algorithms for Stochastic
Steiner Tree, Facility Location, and Vertex Cover.

1.1 Informal Description of Results

In this paper we extend the Boosted Sampling framework for two-stage stochastic
optimization problems with recourse. The framework and terminology is defined
in Section 2. This framework had been proposed in our earlier paper [8]; given an
inflation parameter σ, and a distribution π over second-stage scenarios, the fol-
lowing procedure was used to translate optimization algorithms for deterministic
problems to their two-stage stochastic variants:

1: Boosted Sampling: Sample σ times from the distribution π to get sets of clients
D1, . . . , Dσ.

2: Building First Stage Solution: Build an α-approximate solution for the clients D =
∪iDi.

3: Building Recourse: When actual future in the form of a set S of clients appears
(with probability π(S)), augment the solution of Step 2 to a feasible solution for S.

Fig. 1. Algorithm Boost-and-Sample(Π)

In [8], we proved that given an α-approximation algorithm for the deter-
ministic version Det(Π) of any problem Π , boosted sampling would yield an



approximation algorithm for the two-stage stochastic version Stoc(Π), as long
as the deterministic algorithm satisfied certain technical cost-sharing conditions;
moreover, the sampling framework worked even if the probability distribution π
over the second-stage client sets was specified using a black-box from which one
could draw samples efficiently.

Multistage Results. We first show (in Section 3) how to extend the boosted
sampling framework to handle k-stage stochastic variants of problems (for all
k ≥ 2), and give the technical conditions under which effective approximations
can be obtained. (See Theorems 6 and 7 for the precise statements). As in [8],
these technical conditions are phrased in terms of the existence of certain “good”
cost-sharing functions related to the approximation algorithms. In particular, we
want the cost-shares to satisfy both strictness and cross-monotonicity; details
and definitions appear in Section 2.

In Section 5, we show the existence of these “good” cost-shares for some
problems, thus giving us constant-factor approximation algorithms when the
number of stages is a constant. In particular, we look at the Steiner tree problem
(where we get a 2k-approximation for the k-stage problem), Facility Location
(an approximation of 3 · 2k), and Vertex Cover (at most 4k). A more precise
summary of our results for the k-stage versions of these problems is in the last
column of Figure 2.

Correlated Inflation. As outlined in Figure 1, boosted sampling assumes a
fixed deterministic inflation parameter σ. If this inflation parameter σσσ is random
but independent of the distribution π over scenarios, one can just use E[σσσ] in
the place of σ. This independence assumption is somewhat restrictive, as the
equipment prices often correlate with demands. Here, using the expected value
can lead to very poor approximations.

In Section 4, we give a simple way to extend the Boosted Sampling framework
to the case when σσσ is arbitrarily correlated with the distribution π without losing
anything in the appproximation ratios.

1.2 Related Work

There is a huge body of work in the Operations Research community on multi-
stage stochastic optimization with recourse; the study of stochastic optimiza-
tion [3, 15] dates back to the work of Dantzig [4] and Beale [2] in 1955. Stochas-
tic linear programming was defined in these papers, and have been very widely
studied since, with gradient-based and decomposition-based approaches being
known for some versions of stochastic linear programming. On the other hand,
only moderate progress has been reported for stochastic integer (and mixed-
integer) programming in both theoretical and computational domains; see [21,
16] for details.

The study of stochastic versions of NP-hard problems has received some at-
tention lately in the theoretical computer science community, and approximation
algorithms for two-stage stochastic programming versions of a variety of com-



binatorial optimization problems have been devised actively in several recent
papers [8, 11, 20, 9, 22, 5].

Shmoys and Swamy [23] have recently shown that for a broad class of multi-
stage stochastic linear programs, a (1 + ε)-approximate solution can be found in
polynomial time using a Sampled-Average-Approximation approach. They show
that for several problems (including Facility Location, Set Cover and Vertex
Cover), the LP solution for each stage can be rounded to an integer solution in-
dependently of other stages. In contrast, our technique requires strict cost shares,
but does not depend on the existence of a suitable LP relaxation, or the ability
to round each stage independently.

Independently of our work, Hayrapetyan et al. [10] have also devised ap-
proximation algorithms for the multistage version of the Stochastic Steiner tree
problem that we consider, using a reduction to a variant of an information net-
work gathering problem which they address in their paper. They also provide
an O(k)-approximation algorithm for multistage Stochastic Steiner tree (our ap-
proximation ratio is 2k). However, their techniques do not seem to extend to the
other covering problems that we address in this paper.

2 Basic Model and Notation

Let us define an abstract combinatorial optimization problem Π that we will
adapt to a stochastic setting. The optimization problem Π is defined by U , the
universe of clients (or demands), and the set X of elements we can purchase. For
a subset F ⊆ X of elements, let c(F ) =

∑
e∈F ce denote the cost of F . Given a

set S of clients, a solution F that satisfies each client j ∈ S is labeled feasible
for S. The definition of satisfaction naturally depends on the problem; e.g., in
the (rooted) Steiner tree problem on a graph G = (V, E), the universe of clients
is the set of possible terminals (U = V ), the element set X is the set of edges
E, and a terminal j ∈ S is satisfied by F ⊆ X if F contains a path from j to
the root vertex r. The cost of a set of edges F ⊆ X is c(F ) =

∑
e∈F ce.

Given a set S ⊆ U of clients, we let Sols(S) ⊆ 2X be the set of feasible
solutions for S. Given a client set S ⊆ U , the deterministic version Det(Π) of Π
asks us to find a solution F ∈ Sols(S) of minimum cost. We denote by OPT(S)
the cost of this minimum cost solution.

Definition 1. A problem Π is sub-additive if for any S and S′ being two sets
of clients with solutions F ∈ Sols(S) and F ′ ∈ Sols(S′), we have that (i) S ∪ S′

is a legal set of clients for Π, and (ii) F ∪ F ′ ∈ Sols(S ∪ S′).

As in previous papers which give approximation algorithms for two-stage stochas-
tic optimization problems [8, 11, 20], we restrict our attention to sub-additive
problems. (Note that the sub-additivity in the rooted Steiner tree problem is
ensured by the presence of the root r.)

Given any problem Π , we study the variant when the set of clients (or re-
quirements) is not known in advance, but is revealed gradually. We proceed to
build the solution in stages; in each stage, we gain a more precise estimate of



the requirements of clients, and then can buy or extend a partial solution (at
gradually increasing cost) in response to this updated information. Ultimately,
we learn the entire set S of clients or requirements, and then must complete the
existing partial solution to a feasible solution F ∈ Sols(S).

Multi-stage Stochastic Optimization Problems. We can now define stochastic
variants Stoc(Π) of the problem Π . In this model, we obtain increasingly precise
forecasts about user demands over several stages as in the Steiner tree example.
In the k-stage problem, we are allowed to buy a set of elements in each stage
to augment our current solution in reaction to the updated information received
in that stage; however, the cost of buying an element e ∈ X is increasing with
each stage. Extending the existing terminology, we use σi to denote the inflation
factor of stage i; i.e., how much more expensive each element is in comparison
to stage i− 1. For completeness, we define σ1 = 1. Hence purchasing an element
e ∈ X in stage i costs ce

∏i

j=1 σi. We assume that costs are non-decreasing,
which corresponds to σi ≥ 1.

– At the beginning of the i-th stage (where 1 ≤ i ≤ k − 1), we receive a signal
si that represents the information gained that we can use to correct our
anticipation of the demands. Formally, the signal si is a random variable
correlated with S and in stage i we observe si, a realization of si. (Note that
the signal s1 is a dummy signal, but we use it to simplify notation.) After this
observation si, we know that future signals, as well as the set S of demands
will come from the conditional distribution [π|s1 = s1, s2 = s3, . . . , si = si].
After observing the signal si, we can purchase some more elements Fi ⊆ X
at cost

∏i

j=1 σjc(Fi).
– Finally, in the k-th stage we observe the realization of the random variable

S = S, and have to buy the final set Fk so that ∪k
i=1Fk ∈ Sols(S). Again, our

goal is to minimize the expected cost incurred in all stages together, that is,

Z = E
[ ∑k

i=1 (
∏

j≤i σj) c(Fi)
]
.

Note that each of the partial solutions Fi = Fi(s1, s2, . . . , si) may depend on
signals up to stage i, but not on signals observed in the subsequent stages.

2.1 Cost sharing functions

We now define the notion of cost shares that we will crucially use to analyze our
approximation algorithms. Loosely, a cost-sharing function ξ divides the cost of
a solution F ∈ Sols(S) among the clients in S. Cost-sharing functions have long
been used in game-theory (see, e.g., [13, 14, 18, 19, 24]).

Cost-shares with a closer algorithmic connection were recently defined by
Gupta et al. [7] to analyze a randomized algorithm for the Rent-or-Buy network
design problem. In this paper, we have to redefine strict cost-sharing functions
slightly: in contrast to previously used definitions, our cost-shares are defined
by, and relative to, an approximation algorithm A for the problem Π .



Definition 2 (Cost-shares). A cost-sharing algorithm A for a problem Π
takes an instance (X, S) of Π and outputs (a) a solution F ⊆ X with F ∈
Sols(S), and (b) a real value ξ(X, S, j) ≥ 0 for each client j ∈ S. This value
ξ(X, S, j) is called the cost-share of client j, and the function ξ(·, ·, ·) computed
by A is the cost sharing function associated with A.

Cross-monotonicity of cost-sharing functions is a useful property often used
in the game-theoretic as well as algorithmic literature:

Definition 3 (Cross-monotonicity). A cost-sharing function ξ is cross-monotone
if for every pair of client sets S ⊆ T and client j ∈ S, we have ξ(X, T, j) ≤
ξ(X, S, j).

We also require all cost-sharing functions to provide a lower bound on the
cost of the optimal solution, in order to use the cost-sharing function to provide
bounds on the cost of our solution.

Definition 4 (Competitiveness). A cost-sharing function ξ is competitive if
for every client set S, it holds that

∑
j∈S ξ(X, S, j) ≤ OPT(X, S). (2)

For a subset of clients S′ ⊆ S, let ξ(X, S, S′) denote the sum
∑

j∈S′ ξ(X, S, j);
thus competitiveness is the property that ξ(X, S, S) ≤ OPT(X, S). In this paper,
we will focus solely on competitive ξ.

Crucial to our proofs is the notion of strictness that relates the cost of ex-
tending a solution on S so as to serve more clients T to the cost shares of T .
Formally, given a set X of elements and S of clients, let F = A(X, S) denote the
solution found by algorithm A. We create a new reduced instance of the problem
Π by zeroing out the cost of all elements in F ; this instance is denoted by X/F .

Definition 5 (Strictness [8]). A cost-sharing algorithm A is β-strict if for any
sets of clients S, T there exists a solution FT ⊆ X constructible in polynomial
time such that A(X, S) ∪ FT ∈ Sols(T ) and

c(FT ) ≤ β × ξ(X, S ∪ T, T ). (3)

A subtly different notion of strictness is c-strictness; here the “c” is supposed
to emphasize the enhanced role of the cost-shares.

Definition 6 (c-strictness of ξ). Let S, T ⊆ U be sets of clients, and let X
be an instance of Π. The cost-sharing function ξ given by an algorithm A is
β-c-strict if

ξ(X/A(X, S), T, T ) ≤ β × ξ(X, S ∪ T, T ). (4)

In other words, the total cost shares for the set T of clients in the reduced
instance X/A(X, S) is at most β times the cost-shares for T if the clients in
S were present as well. Note that if ξ is a competitive cost sharing function,
then (3) implies (4), and ξ is β-c-strict if it is β-strict.



Recall that A is an α-approximation algorithm if c(A(X, S)) ≤ α OPT(X, S).
In this paper, we will need the following stronger guarantee (which goes hand-
in-hand with c-strictness):

Definition 7 (Approximation w.r.t. ξ). An algorithm A (with cost-sharing
function ξ) is an α-approximation algorithm with respect to ξ if

c(A(X, S)) ≤ α ξ(X, S, S). (5)

If ξ is competitive, then ξ(X, S, S) ≤ c(OPT(S)), and thus an α-approximation
algorithm w.r.t. ξ is also simply an α-approximation algorithm. Moreover, (5)
and (4) together implies that an α-approximation algorithm w.r.t. β-c-strict ξ
is (αβ)-strict in the sense of Definition 5.

2.2 New Results on c-Strictness and Multi-stage Approximations

Having laid down the crucial definitions, we can finally state the main theorems
for multi-stage stochastic covering problems.

Theorem 1. There is an α · ∑k−1
i=0 βi-approximation algorithm for the k-stage

stochastic problem Stock(Π) if the corresponding problem Π has an α-approximation
algorithm A with respect to a β-c-strict cost-sharing function ξ, and this ξ is
cross-monotone.

A slightly weaker version of the above theorem can be proved without cross-
monotone cost-shares: this is useful for problems like Vertex Cover for which
good cross-monotone cost-shares do not exist [12].

Theorem 2. There is an α · ∑k−1
i=0 β1β2

i-approximation algorithm for the k-
stage stochastic problem Stock(Π) if the corresponding problem Π has an α-
approximation algorithm A with respect to a β1-c-strict cost-sharing function ξ,
and A is also β2-strict with respect to this ξ.

Finally, since the previous results on strictness in [8] were not given in terms
of c-strict cost-sharing functions, we adapt, restate (and in most cases, also
improve) the guarantees here. Figure 2 summarizes the results in this paper.

Theorem 3. There is a 2-approximation algorithm for the Minimum Steiner
Tree problem w.r.t. a 1-c-strict cost sharing function ξ. Furthermore, this ξ is
also cross-monotone.

Theorem 4. The Uncapacitated Facility Location problem admits a 3-approximation
algorithm w.r.t. a 2-c-strict ξ. This cost-sharing function ξ is also cross-monotone.

Theorem 5. The Vertex Cover problem has 2-approximation algorithm w.r.t. an
associated 2-strict (and hence 2-c-strict) cost-sharing function ξ.



Problem Approximation c-Strictness Is ξ k-Stage
ratio α w.r.t. ξ of ξ X-mono? Stochastic Approx.

Steiner Tree 2 1 Yes 2k

Facility Location 3 2 Yes 3(2k − 1)

Vertex Cover 2 2 No 2

3
(4k − 1)

Fig. 2. A summary of the results in this paper

3 Multiple Stage Stochastic Optimization

For ease of exposition, let us state the algorithm assuming that the inflation
factors σi are deterministically known in advance. With some extra work as in
Section 4, randomly varying inflation factors can be handled—the details are
deferred to a full version of this paper.

Let us first outline the key idea of the algorithm. In the two-stage Boosted
Sampling framework with inflation being σ (see Figure 1), the first stage involved
simulating σ independent runs of the second stage and building a solution that
satisfied the union of these simulations. We use the same basic idea for the
k-stage problem: in each stage i, we simulate σi+1 “copies” of the remaining
(k − i)-stage stochastic process; each such “copy” provides us with a (random)
set of clients to satisfy, and we build a solution that satisfies the union of all
these clients. The “base case” of this recursive idea is the final stage, where we
get a set S of clients, and just build the required solution for S.

1: (Base case.) If i = k, draw one sample set of clients Sk from the conditional
distribution [π|s1, . . . , sk]. Return the set Sk.

2: (New samples.) If i < k, draw bσi+1c samples of the signal si+1 from the conditional
distribution [π|s1, . . . , si]. Let s1, . . . , sn be the sampled signals (where n = bσi+1c).

3: (Recursive calls.) For each sample signal sj , j = 1, . . . , n, recursively call Recur-

Sample(Π, i + 1, s1, . . . , si, s
j) to obtain a sample set of clients Sj . Return the set

Si = ∪n
j=1S

j .

Fig. 3. Procedure Recur-Sample(Π, stage i, s1, . . . , si)

Our algorithm, in each stage i (except the final, k-th stage), uses a very
natural recursive sampling procedure that emulates σi+1 executions of itself on
the remaining (k − i) stages. (This sampler is specified in Figure 3.) Having
obtained a collection of sampled sets of clients, it then augments the current
partial solution to a feasible solution for these sampled sets. Finally, in the k-th
stage it performs the ultimate augmentation to obtain a feasible solution for the
revealed set of demands. The expected number of calls to the black box required
in stage i will be

∏k

j=i+1 σj .



The definition of the sampling routine is given in Figure 3, and the procedure
Multi-Boost-and-Sample(Π, i) to be executed in round i is specified in Figure 4.
Note that if we set k = 2, we get back precisely the Boosted Sampling framework
from our previous paper [8].

1: (External signal.) If the current stage i < k, observe the signal si. If this is the final
stage i = k, observe the required set of clients S instead.

2: (Sample.) If i = k, let Dk := S. Else i < k, and then use procedure Recur-

Sample(Π, i, s1, . . . , si) to obtain a sample set of clients Di.

3: (Augment solution.) Let Bi = ∪i−1

j=1Fj be the elements that were bought in earlier
rounds. Set the costs of elements e ∈ Bi to zero. Using algorithm A, find a set of
elements Fi ⊆ X \ Bi to buy so that (Fi ∪ Bi) ∈ Sols(Di).

Fig. 4. Algorithm Multi-Boost-and-Sample(Π, i)

3.1 The Analysis

We will now show that this extended framework can be used to translate an
approximation algorithm A for the deterministic version Det(Π) of a problem Π
to its k-stage stochastic version Stock(Π). The quality of this translation depends
on the approximation guarantee of A with respect to some c-strict cost-sharing
function. The main result of this section is the following:

Theorem 6. Given a problem Π, if A is an α-approximation algorithm w.r.t. a
β-c-strict cost-sharing function ξ, and if ξ is cross-monotone, then Multi-Boost-

and-Sample(Π) is an α·∑k−1
i=0 βi-approximation algorithm for the k-stage stochas-

tic problem Stock(Π).

Remark 1. We would like to note that the additional assumption of cross-monotonicity
in Theorem 6 is not completely satisfactory. As we show in Theorem 7 in Sec-
tion 3.2, this assumption can be removed at the expense of somewhat worse
approximation ratio. This is useful for problems like Vertex Cover, for which a
cross-monotone cost sharing function with good guarantees is not available [12].

Before we prove Theorem 6, we set the stage for the proof by providing a
brief overview of the proof technique, and proving a couple of lemmas which
provide useful bounds. A näıve attempt to prove this result along the lines of
our previous paper[8] does not succced, since we have to move between the cost-
shares and the cost of the solutions Fi, which causes us to lose factors of ≈ α at
each step. Instead, we bound all costs incurred in terms of the ξ’s: we first argue
that the expected sum of cost-shares paid in the first stage is no more than the
optimum total expected cost Z∗, and then bound the sum of cost-shares in each
consecutive stage in terms of the expected cost shares from the previous stage



(with a loss of a factor of β at each stage). Finally, we bound the actual cost of
the partial solution constructed at stage i by α times the expected cost shares
for that stage, which gives us the geometric sum claimed in the theorem.

Let F ∗ be an optimal solution to the given instance of Stock(Π). We denote
by F ∗

i the partial solution built in stage i; recall that F ∗
i = F ∗

i (s1, s2, . . . , si)
is a function of the set of all possible i-tuples of signals that could be observed
before stage i. The expected cost of this solution can be expressed as

Z∗ = σ1E[c(F ∗
1 (s1))] + σ1σ2E[c(F ∗

2 (s1, s2))] + · · · + σ1 . . . σnE[c(F ∗
k (s1, s2, . . . , sk))].

Lemma 1. The expected cost share E[ξ(X, D1, D1)] is at most the total opti-
mum cost Z∗.

Proof. Consider D1, the sample set of clients returned by Recur-Sample(Π, 1, s1).

We claim there is a solution F̂ (D1), such that E[c(F̂ (D1))] ≤ Z∗ (the expectation
is over the execution of the procedure Recur-Sample). To construct the solution

F̂ (D1), we consider the tree of recursive calls of the procedure Recur-Sample.
For each recursive call Recur-Sample(Π, i, s1, . . . , si), we add the set of elements

F ∗
i (s1, . . . , si) to F̂ (D1). It is relatively straightforward to establish that (1)

F̂ (D1) is a feasible solution for the set D1 and (2) the expected cost

E[c(F̂ (D1))] ≤ E




k∑

i=1

( ∏

j≤i

σj

)
c(F ∗

i )



 = Z∗. (6)

Since the expected cost of a feasible solution for D1 is bounded above by Z∗,
the competitiveness of ξ implies that this bound must hold for the sum of cost
shares as well.

Lemma 2. Let F̂ = F1 ∪ · · · ∪ Fi−1 be the solution constructed in a particular
execution of the first i − 1 stages, and let si be the signal observed in stage i.
Let Di and Di+1 be the random variables denoting the samples returned by the
procedure Recur-Sample in Stages i and i+1, and let Fi be the (random) solution
constructed by A for the set of clients Di. Then,

E[ξ(X/(F̂ ∪ Fi), Di+1, Di+1)] ≤
β

σi+1
·E[ξ(X/F̂ , Di, Di)]. (7)

Proof. Recall that the sampling procedure Recur-Sample(Π, i, s1, . . . , si) gets
n = bσi+1c independent samples s1, s2, . . . sn of the signal si+1 from the distri-
bution π conditioned on s1, . . . , si, and then for each sampled signal calls itself
recursively to obtain the n sets S1, . . . , Sn. Note that the set Di =

⋃n

j=1 Sj is
simply the union of these n sets. On the other hand, the set Di+1 is obtained by
observing the signal si+1 (which is assumed to come from the same distribution
[π|s1, . . . , si]), and then calling Recur-Sample with the observed value of si+1.

We now consider an alternate, probabilistically equivalent view of this pro-
cess. First take n+1 samples s1, . . . , sn+1 of the signal si+1 from the distribution



[π|s1, . . . , si]. Call the procedure Sample(π, i + 1, s1, . . . , si, s
j) for each sj to

obtain sets S1, . . . , Sn+1. Pick an index j uniformly at random from the set of
integers 1, . . . , n+1. Let Di+1 = Sj , and let Di be the union of the remaining n
sets. This process of randomly constructing the pair of sets (Di, Di+1) is clearly

equivalent to the original process. Note that Di ∪ Di+1 =
⋃n+1

l=1 Sl.

To simplify notation, let us denote X/F̂ by X̂. By the definition of β-c-
strictness, we first get

ξ(X̂/Fi, Di+1, Di+1) ≤ β · ξ(X̂, Di ∪ Di+1, Di+1), (8)

By the relation that Di+1 is equivalent to Sj sampled uniformly from n+1 alter-
nates in the equivalent process above and that Di is the union of the remaining
n sets, we have

E[ξ(X̂, Di ∪ Di+1, S
j)] ≤ E

[
1

n
× ξ(X̂, Di ∪ Di+1, Di)

]
. (9)

Now we use cross-monotonicity of the cost shares (which says that the cost shares
of Di should not increase when the elements of Di+1 \ Di join the fray), and
finally get

E
[
ξ(X̂, Di ∪ Di+1, Di)

]
≤ E

[
ξ(X̂, Di, Di)

]
. (10)

Chaining the above inequalities (8–10) proves the lemma.

Proof. (of Theorem 6) Recall that the expected cost of the solution given by
Algorithm Multi-Boost-and-Sample(Π) is:

E[Z] = E
[ k∑

i=1

( i∏

j=1

σj

)
c(Fi)

]

Using cross-monotonicity and the fact that A is an α-c-approximation algo-
rithm with respect to the β-c-strict cost-shares ξ, we have:

E[Z] ≤ αE
[ k∑

i=1

( i∏

j=1

σj

)
ξ(X/Bi, Fi, Fi)

]

Using Lemma 2 inductively on ξ(X/Bi, Fi, Fi), we find that ξ(X/Bi, Fi, Fi) ≤
βi

Q

i
j=1

σj
ξ(X, D1, D1). Using this inequality in the bound for E[Z] above:

E[Z] ≤ αE
[ k∑

i=1

βiξ(X, D1, D1)
]

Lemma 1 bounds ξ(X, D1, D1) from above by Z∗. Using this bound in the
inequality above completes the proof of Theorem 6.



3.2 Guarantees without cross-monotone cost-shares

We prove the following weaker theorem about the performance of Multi-Boost-

and-Sample(Π) for problems where the cost shares are not cross-monotone.

Theorem 7. If A is an α-c-approximation algorithm for Π with respect to β1-
c-strict cost-shares ξ that are also β2-strict, then Multi-Boost-and-Sample(Π) is

a α · ∑k−1
i=0 (β1β2)

i approximation algorithm for the k-stage stochastic problem
Stock(Π).

The proof of Theorem 7 proceeds along the lines of the proof of Theorem 6,
except that the induction lemma (Lemma 2) needs to be adapted for cost-shares
which are no longer cross-monotone. The new lemma is stated and proved below.
We omit the proof of Theorem 7 for brevity, since it can be proved by combining
Lemmas 1 and the following lemma exactly as in the proof of Theorem 6.

Lemma 3. Let F̂ = F1 ∪ · · · ∪ Fi−1 be the solution constructed in a particular
execution of the first i − 1 stages, and let si be the signal observed in stage i.
Let Di and Di+1 be the random variables denoting the samples returned by the
procedure Recur-Sample in Stages i and i+1, and let Fi be the (random) solution
constructed by A for the set of clients Di. Then,

E[ξ(X/(F̂ ∪ Fi), Di+1, Di+1)] ≤
β1β2

σi+1
· E[ξ(X/F̂ , Di, Di)]. (11)

Proof. We proceed just as in the proof of Lemma 2, using the same notation. As
in the previous lemma, we use the definition of β1-c-strictness and the equivalent
sampling process defined in the proof of Lemma 2 to obtain the following two
inequalities:

ξ(X̂/Fi, Di+1, Di+1) ≤ β1 · ξ(X̂, Di ∪ Di+1, Di+1), (12)

E[ξ(X̂, Di ∪ Di+1, S
j)] ≤ E[

1

n + 1
ξ(X̂, Di ∪ Di+1, Di ∪ Di+1)]. (13)

Now, by the competitiveness of the cost shares, we have

E[ξ(X̂, Di ∪ Di+1, Di ∪ Di+1)] ≤ E
[
OPT(X̂, Di ∪ Di+1)

]
. (14)

From symmetry and subadditivity, we get

E
[
OPT(X̂, Di ∪ Di+1)

]
≤ E

[
n + 1

n
OPT(X̂, Di)

]
. (15)

Finally, by (regular) β2-strictness, we get

E
[
OPT(X̂, Di)

]
≤ E[β2 · ξ(X̂, Di, Di)] (16)

Putting all the above inequalities together gives the lemma.



4 Correlated Inflation Factors

In this section, we show how to extend the basic Boosted Sampling framework
to work in the case where the inflation factor σ is a random variable arbitrarily
correlated with the random scenarios. For brevity, we describe the idea only
for the two-stage setting, though the same idea can be used for the multi-stage
framework of Section 3.

Formally, let us assume that we have access to a distribution π′ over R≥1×2U ,
where π′(σ, S) is the probability that the set S arrives and the inflation factor
is σ. We assume that we know an integer M ∈ Z which is an upper bound on
the value of the inflation parameter σ; i.e., with probability 1, it should be the
case that σ ≤ M holds. (Note that choosing a pessimistic value of M will only
increase the running time, but not degrade the approximation guarantee of the
framework.)

1: Boosted Sampling: Draw M independent samples from the joint distribution π′ of
(σσσ,S). Let (σ1, S1), (σ2, S2),. . . , (σM , SM ) denote this collection of samples.

2: Rejection Stage: For i = 1, . . . , M , accept the sample Si with probability σi/M . Let
Si1 , Si2 , . . . , Sik

be the accepted samples, and let S =
S

j
Sij

.

3: First-stage Solution: Using the algorithm A, construct an α-approximate first-stage
solution F 1 ∈ Sols(S).

4: Second-stage Recourse: Let T be the set of clients realized in the second stage.
Use an augmenting algorithm to compute the second-stage solution F 2 such that
F 1 ∪ F 2 ∈ Sols(T ).

Fig. 5. Algorithm General-Boost-and-Sample(Π)

The algorithm General-Boost-and-Sample(Π) is given in Figure 5. Note that
if σσσ is a constant, then we would behave identically to the original Boosted
Sampling framework. To get some intuition for the new steps, note that if the
sampled inflation factor σi is large, this indicates that we want to handle the
associated Si in the first stage; on the other hand, if the σi is small, we can afford
to wait until the second-stage to handle the associated Si—and this is indeed
what the algorithm does, albeit in a probabilistic way.

The following is an extension of the main structural theorem proved in our
earlier paper [8]:

Theorem 8. Consider a sub-additive combinatorial optimization problem Π,
and let A be an α-approximation algorithm for its deterministic version Det(Π).
If A admits a β-strict cost sharing function, then General-Boost-and-Sample(Π)
is an (α + β)-approximation algorithm for Stoc(Π).



Proof. Let us transform the “random inflation” stochastic problem instance
(X, π′) to one with a fixed inflation factor thus: the distribution

π̂(σ, S) = π′(σ, S) × (σ/M); (17)

note that this ensures that
∑

σ,S π̂(σ, S) ≤ 1, and hence we can increase the
probability π̂(1, ∅) so that the sum becomes exactly 1 and π̂ is a well-defined
probability distribution. The inflation factor for this new instance is set to M ,
and hence the σ output by π̂ is only for expositional ease.

Now the objective for this new problem is to minimize the expected cost
under this new distribution, which is

c(F0) +
∑

σ,S π̂(σ, S) M c(FS) = c(F0) +
∑

σ,S π′(σ, S) (σ/M) M c(FS),

which is the same as the original objective function; hence the two problems are
identical, and running Boost-and-Sample on this new distribution π̂ with inflation
parameter M would give us an (α + β)-approximation.

Finally, note that one can implement π̂ given black-box access to π′ by just
rejecting any sample (σ, S) with probability σ/M . Including this implementation
within Boost-and-Sample gives us precisely the above General-Boost-and-Sample,
which completes the proof of the theorem.

This immediately implies a 3.55-approximation for Stochastic Steiner tree,
a 4-approximation for Stochastic Vertex Cover, and a 5.45-approximation for
Stochastic Facility Location even when the second-stage inflation factors are
drawn from a distribution that may be arbitrarily correlated to the set of clients
materializing in the second stage.

A näıve attempt to extend the Boosted Sampling algorithm of [8] might
proceed by obtaining E[σσσ] samples and invoking the algorithm. Unfortunately,
this approach is doomed to fail, as the following example shows. Indeed, consider
the case where with probability 1

2 , the inflation σ = M � 1 but S = ∅, and with
probability 1

2 , the inflation σ ≈ 1 but S 6= ∅; the average value of σ is ≈ M/2,
but in fact we should be ignoring the high σ’s.

5 New and Improved Strictness Results

In this section, we prove our results about approximation algorithms for the prob-
lems under consideration; in order to use Theorem 6, we have to give our approx-
imation guarantees with respect to the associated c-strict cost-sharing functions.

5.1 Steiner Tree

Theorem 3. There is a 2-approximation algorithm for the Minimum Steiner
Tree problem w.r.t. a 1-c-strict cost sharing function ξ. Furthermore, this ξ is
also cross-monotone.



Proof. The cost sharing function ξ for Steiner tree given by Jain and Vazi-
rani [13] is cross-monotonic, and the minimum spanning tree heuristic is a 2-
approximation algorithm with respect to it. The fact that ξ is 1-c-strict can
be verified by comparing the executions of the primal-dual algorithm of [13]
(which is really an instance of the algorithms of [1, 6]) on the inputs (X, T ) and
(X/T, T ), where T is any tree connecting the set S to the root (in fact, a slightly
more complex argument works with T being an arbitrary set of edges). It can
be observed that any non-root cluster in the latter execution behaves identically
to its matching cluster in the former execution, hence its members accrue the
same cost shares in both runs. A non-root component can only attach to the
root component earlier in the latter execution, since the root component in the
execution on (X/T, T ) is larger (i.e. it contains all the vertices of T), stopping
the growth of cost shares of terminals in the affected cluster, while their shares
in the former run may still continue to grow.

For a thorough discussion of the cost sharing scheme of Jain and Vazirani
and its monotonicity properties, the reader is refered to [13].

5.2 Uncapacitated Facility Location

Theorem 4. The Uncapacitated Facility Location (UFL) problem admits a 3-
approximation algorithm w.r.t. a 2-c-strict ξ. This ξ is also cross-monotone.

Proof. We use a slight variant of the cost sharing function ξ defined by Pál and
Tardos [19]. We shall refer heavily to our paper [8], where we proved that the
cost sharing function ξ satisfies (3 +

√
6)-strictness.

First, let us define the cost shares. Let F be a set of facilities, and S ⊆ U
a set of clients. For each facility p ∈ F , [19] defines the opening time tp(S) of a
facility p to be the radius r of the smallest ball B(p, r) centered at p such that if
each client in the ball is charged r, this would be enough to pay for the opening
cost of p as well as connecting each client inside the ball to p.

tp(S) = min{r |
∑

j∈B(p,r)

r − c(j, p) ≥ fp}

In [19], the fee charged to a client j for connecting to a facility p was defined
as αjp = max(tp(S), c(jp)), and the cost share of j to be the minimum fee it
could pay to get connected: ξ(S, j) = minp∈F αjp. The papers [17, 19] gave an
algorithm A that is a 3-approximation w.r.t. ξ.

To obtain a better c-strictness, we slightly modify the cost sharing function
by introducing a special rule for zero-cost facilities. Such facilities arise in later
stages of the multistage problem: recall that we set the opening cost of a facility
opened in an earlier stage to zero. We set the connection fee of a client j to
a zero-cost facility to be one third of their distance; that is, we define α′

jp =
c(j, p)/3 if fp = 0 and α′

jp = αjp otherwise. We define the new cost shares to be
ξ′(S, j) = minp α′

jp. It is not difficult to verify that the algorithm A from [19] is
still a 3-approximation algorithm w.r.t. ξ′.



We need to consider executions of the algorithm A on two instances: the
instance with original facility costs fp, and the instance with costs f ′

p = 0 if p
was opened by the algorithm A(f, S), and f ′

p = fp otherwise. We show that for
every client j, its cost share in the latter instance is at most twice its cost share
in the former, thus proving 2-c-strictness of ξ′.

Consider a client j ∈ T whose cost share is ξ(f, S ∪ T, j) in the algorithm
A(F, S ∪ T ). By the properties of the algorithm A, there is a primary facility
p = p(j) for client j so that either ξ(f, S ∪ T, j) = max(tp(S ∪ T ), c(j, p)) and
fp > 0, or ξ(f, S ∪T, j) = c(j, p)/3 and fp = 0. In the latter case we have f ′

p = 0
as well, and hence ξ(f ′, T, j) ≤ c(j, p)/3 ≤ ξ(f, S ∪ T, j). Thus from now on we
can focus on the case fp > 0.

A facility p is T -heavy, if |B(p, tp(S ∪ T )) ∩ T | ≥ |B(p, tp(S ∪ T )) ∩ S|. If p
is T -heavy, then we argue (along the lines of Claim 5.2 from [8]) that tp(T ) ≤
1
b
tp(S∪T ). On the other hand, if p is T -light, we have that tp(S) ≤ 1

1−b
tp(S∪T ),

and it is a known fact that in the execution A(f, S), there must be an open facility
q such that c(p, q) ≤ 2tp(S).

Hence, the cost share ξ(f ′, T, j) ≤ max(tp(T ), c(j, p)) ≤ 2ξ(f, S ∪ T, j) if p is
T -heavy and ξ(f ′, T, j) ≤ c(j, q)/3 ≤ ξ(f, S ∪ T, j) if p is T -light.

5.3 Vertex Cover

Theorem 5. The Vertex Cover problem has 2-approximation algorithm w.r.t. an
associated 2-strict (and hence 2-c-strict) cost-sharing function ξ.

Proof. This is a minor strengthening of Theorem 5.5 of [8]. We shall refer heavily
to the notation and symbols from Section 5.2 of [8], which the reader is urged
to use as a reference.

According to Equation (5.7) of [8], we have that

‖p1
S + p1

T − p2‖1 ≤ ‖p1
T‖1, (18)

where ‖ · ‖1 denotes the l1 norm.
Now, consider the run R3 of the algorithm A on the set of edges T with vertex

prices c3 = c − p2. We claim that the vector p̂ defined by p̂(v) = max(0, p1(v) −
p2(v)) is a feasible solution to the relaxed Vertex Cover instance (c3, T ). Indeed,
for any vertex v ∈ V , we have cv − p2(v) − p̂(v) ≤ cv − p1(v), and since p1 is
feasible for the instance (c, S ∪T ) (and hence also for (c, T )), it follows that p̂ is
a feasible solution for the instance (c3, T ).

Note that cost(p̂) = ‖p̂‖1 which is no more than ‖p1
T ‖1 = 2ξ(S ∪ T, T ) by

Equation (18), hence the theorem follows.

6 Concluding Remarks

While the algorithms described in this paper can provide approximation al-
gorithms with performance guarantee linear in the number of stages for some



problems (Stochastic Steiner Tree), this requires 1-c-strict cost-shares, which
may not always exist. The question of which k-stage stochastic optimization
problems can be approximated within ratios linear in k and which require expo-
nential dependence on k is an intriguing one. We also note that the running time
of our algorithm is exponential in k due to the recursive sampling procedure; we
leave open the question whether a sub-exponential collection of samples can be
used to construct the partial solutions in earlier stages while still resulting in an
algorithm with a provably good approximation ratio.
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