Skip to main content

What About Wednesday? Approximation Algorithms for Multistage Stochastic Optimization

  • Conference paper
Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques (APPROX 2005, RANDOM 2005)

Abstract

We study the problem of multi-stage stochastic optimization with recourse, and provide approximation algorithms using cost-sharing functions for such problems. Our algorithms use and extend the Boosted Sampling framework of [6]. We also show how the framework can be adapted to give approximation algorithms even when the inflation parameters are correlated with the scenarios.

Full paper available at http://www.tepper.cmu.edu/andrew/ravi/public/pubs.html.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beale, E.M.L.: On minimizing a convex function subject to linear inequalities. J. Roy. Statist. Soc. Ser. B. 17, 173–184 (1955); discussion, 194–203 (1955) (Symposium on linear programming)

    MATH  MathSciNet  Google Scholar 

  2. Birge, J.R., Louveaux, F.: Introduction to stochastic programming. Springer Series in Operations Research. Springer, New York (1997)

    MATH  Google Scholar 

  3. Dantzig, G.B.: Linear programming under uncertainty. Management Sci. 1, 197–206 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dhamdhere, K., Ravi, R., Singh, M.: On two-stage stochastic minimum spanning trees. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 321–334. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Gupta, A., Kumar, A., Pál, M., Roughgarden, T.: Approximations via cost-sharing. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 606–615 (2003)

    Google Scholar 

  6. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: Approximation algorithms for stochastic optimization problems. In: Proceedings of the 36th ACM Symposium on the Theory of Computing (STOC), pp. 417–426 (2004)

    Google Scholar 

  7. Gupta, A., Ravi, R., Sinha, A.: An edge in time saves nine: LP rounding approximation algorithms for stochastic network design. In: Proceedings of the 45th Symposium on the Foundations of Computer Science (FOCS), pp. 218–227 (2004)

    Google Scholar 

  8. Hayrapetyan, A., Swamy, C., Tardos, E.: Network design for information networks. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 933–942 (2005)

    Google Scholar 

  9. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.: On the costs and benefits of procrastination: Approximation algorithms for stochastic combinatorial optimization problems. In: Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 691–700 (2004)

    Google Scholar 

  10. Immorlica, N., Mahdian, M., Mirrokni, V.: Limitations of crossmonotonic cost-sharing schemes. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, SODA (2005)

    Google Scholar 

  11. Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative games. In: Proceedings of the 33rd Annual ACM Symposium on the Theory of Computing (STOC), pp. 364–372 (2001)

    Google Scholar 

  12. Kall, P., Wallace, S.W.: Stochastic programming. Wiley-Interscience Series in Systems and Optimization. John Wiley & Sons Ltd., Chichester (1994)

    MATH  Google Scholar 

  13. Haneveld, W.K.K., van der Vlerk, M.H.: Stochastic Programming. Department of Econometrics and OR, University of Groningen, Netherlands (2003)

    Google Scholar 

  14. Moulin, H., Shenker, S.: Strategy proof sharing of submodular costs: budget balance versus efficiency. Econom. Theory 18(3), 511–533 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pál, M., Tardos, É.: Group strategyproof mechanisms via primal-dual algorithms. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, pp. 584–593 (2003)

    Google Scholar 

  16. Ravi, R., Sinha, A.: Hedging uncertainty: Approximation algorithms for stochastic optimization problems. In: Proceedings of the 10th Integer Programming and Combinatorial Optimization Conference, pp. 101–115 (2004)

    Google Scholar 

  17. Schultz, R., Stougie, L., van der Vlerk, M.H.: Two-stage stochastic integer programming: a survey. Statist. Neerlandica 50(3), 404–416 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shmoys, D., Swamy, C.: Stochastic optimization is (almost) as easy as deterministic optimization. In: Proceedings of the 45th Symposium on the Foundations of Computer Science (FOCS), pp. 228–237 (2004)

    Google Scholar 

  19. Shmoys, D., Swamy, C.: Sampling-based approximation algorithms for multi-stage stochastic optimization (2005) (manuscript)

    Google Scholar 

  20. Young, H.P.: Cost allocation. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory, vol. 2, ch. 34, pp. 1193–1235. North-Holland, Amsterdam (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gupta, A., Pál, M., Ravi, R., Sinha, A. (2005). What About Wednesday? Approximation Algorithms for Multistage Stochastic Optimization. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2005 2005. Lecture Notes in Computer Science, vol 3624. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538462_8

Download citation

  • DOI: https://doi.org/10.1007/11538462_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28239-6

  • Online ISBN: 978-3-540-31874-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics