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Abstract. In this paper, we demonstrate that the machine learning ap-
proach of rule extraction from a trained neural network can be success-
fully applied to SARS-coronavirus cleavage site analysis. The extracted
rules predict cleavage sites better than consensus patterns. Empirical
experiments are also shown.

1 Introduction

The first cases of severe acute respiratory syndrome (SARS) were identified in
Guangdong Province, China in November, 2002 and have spread to Hong Kong,
Singapore, Vietnam, Canada, the USA and several European countries [20]. An
outbreak of a life-threatening disease referred to as SARS has spread to many
countries around the world. By late June 2003, the World Health Organization
(WHO) has recorded more than 8400 cases of SARS and more than 800 SARS-
related deaths, and a global alert for the illness was issued due to the severity of
the disease [25]. A growing body of evidence has convincingly shown that SARS
is caused by a novel coronavirus, called SARS-coronavirus or SARS-CoV [14,19].
A novel SARS associated with coronavirus (SARS-CoV) has been implicated as
the causative agent of a worldwide outbreak of SARS during the first 6 months
of 2003 [16,24]. Currently, the complete genome sequences of 11 strains of SARS-
CoV isolated from some SARS patients have been sequenced, and more complete
genome sequences of SARS-CoV are expected to come [13]. It is also known that
the process of cleaving the SARS-CoV polyproteins by a special proteinase, the
so-called SARS coronavirus main proteinase (CoV Mpro), is a key step for the
replication of SARS-CoV [18]. The importance of the 3CL proteinase cleavage
sites not only suggests that this proteinase is a culprit of SARS, but also makes
it an attractive target for developing drugs directly against the new disease
[3,10,23].

Several machine learning approaches including artificial neural networks have
been applied to proteinase cleavage site analysis [1,3,4,7,15]. Even though neural
network model has been successfully used for the analysis [1,7], one of the major
weakness of the neural network is its lack of explanation capability. It is hidden in
a black box and can be used to predict, but not to explain domain knowledge in
explicit format. In recent years, there have been studies on rule extraction from
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feed-forward neural networks [1,5,6,7,8,12,17,21,22]. The extracted rules provide
human users with the capability to explain how the patterns are classified and
may provide better insights about the domain. Thus, it is used for various data
mining applications.

In this paper, we investigate the SARS-CoV cleavage site analysis using feed-
forward neural networks. Also we demonstrate how to extract prediction rules
for cleavage sites using the approach of rule extraction from neural networks.
Experimental results compared to other approaches are also shown.

2 Rule Mining for SARS-CoV

Kiemer, et al. used feedforward neural networks for SARS-CoV cleavage site
analysis [11]. They showed that the neural network outperforms three consensus
patterns in terms of classification performance. The three consensus patterns are
‘LQ’, ‘LQ[S/A]’ and ‘[T/S/A]X[L/F]Q[S/A/G]’. However, they used the neural
network for just cleavage site prediction, but not for understanding the sites
in explicit knowledge. In this paper, we extract If-Then rules from the neural
networks and then compare the generated rules to the consensus patterns. Our
experiments includes the followings:

– Training of a feedforward neural network with known SASS-CoV cleavage
site data.

– Extraction of If-Then rules from the trained neural network.
– Performance comparison of the extracted rules over consensus rules.

In this paper, we use decompositional approach for rule extraction. Decom-
positional approaches to rule extraction from a trained neural network (i.e., a
feed-forward multi-layered neural network) involves the following phases:

1. Intermediate rules are extracted at the level of individual units within the
network. At each non-input unit of a trained network, n incoming connection
weights and a threshold are given. Rule extraction at the unit searches a set
of incoming binary attribute combinations that are valid and maximally-
general (i.e., size of each combination is as small as possible).

2. The intermediate rules from each unit are aggregated to form the composite
rule base for the neural network. It rewrites rules to eliminate the symbols
which refer to hidden units but are not predefined in the domain. In the
process, redundancies, subsumptions, and inconsistencies are removed.

There have been many studies for efficient extraction of valid and general rules.
One of the issues is time complexity of the rule extraction procedure. The rule
extraction is computationally expensive since the rule search space is increased
exponentially with the number of input attributes. If a node has n incoming
nodes, there are 3n possible combinations. Kim [12] introduced a computation-
ally efficient algorithm called OAS(Ordered-Attribute Search). In this paper, the
OAS is used for extraction of one or two best rules from each node.
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3 Experimental Results

3.1 SARS-CoV Cleavage Sites

Twenty-four genomic sequences of coronavirus and the annotation informa-
tion were downloaded from the GenBank database [2], of which 12 are SARS-
CoVs and 12 are other groups of coronaviruses. The former includes SARS-
CoV TOR2, Urbani, HKU-39849, CUHK-W1, BJ01, CUHK-Su10, SIN2500,
SIN2748, SIN2679, SIN2774, SIN2677 and TW1, whereas the latter comprises
IBV, BCoV, bovine coronavirus strain Mebus (BCoVM), bovine coronavirus
isolate BCoV-LUN (BCoVL) , bovine coronavirus strain Quebec (BCoVQ),
HCoV-229E (NC002645), MHV, murine hepatitis virus strain ML-10 (MHVM),
murine hepatitis virus strain 2 (MHV2), murine hepatitis virus strain Penn 97-1
(MHVP), PEDV and TGEV [9].

The data set includes 8 regions (i.e., 8 positions of P4, P3, P2, P1, P1’, P2’,
P3’, P4’) and one class attribute. Each region represents one of the 20 amino
acids and the class attribute tells if the instance with 8 region values belongs
to either cleavage (i.e., 1) or non-cleavage (i.e., 0). Each region value that is
one of 20 amino acids is converted into 20 binary values in which only one of
them is 1 and the rests are 0s. This binary encoding is illustrated in table 1.
Thus, we have 160 (i.e., 8 ∗ 20) binary input nodes and one output node for our
neural network architecture. From each sequence of coronavirus genome, eleven
cleavage sites are included and thus, total 264 (= 24 ∗ 11) sites are available.
We eliminated duplicated ones out of the total 264 results and identified final
seventy cleavage sites. For training a neural network classifier, negative examples
(presumed non-cleavage sites) are created by defining all other glutamines in the
viral polyproteins as non-cleavable sites [11]. Therefore, the data set include 70
positive (i.e., cleavage) and 281 negative (i.e., non-cleavage) examples. Three-
fold cross-validation were used for classifier evaluation. That is, every test set
contains 117 examples of which 23 or 24 were positive examples.

3.2 Performance of Extracted Rules

We configured neural networks with 160 input nodes, 2 hidden nodes and 1
output nodes and trained them with training sets. The classification performance
of the neural networks is shown in table 2.

We used the OAS algorithm to extract rules from trained neural networks [12]
and compared classification performance over consensus rules. The consensus
patterns of ‘LQ’, ‘LQ[S/A]’ and ‘[T/S/A]X[L/F]Q[S/A/G]’ can be converted
into the form of rules. All of the consensus patterns have the ‘Q’ at position
p1, and all of 70 cleavage site examples have the ‘Q’ at position p1. Thus, we
created negative examples with ‘Q’ at position p1 for fair comparison. Then the
consensus patterns we use are ‘L.’, ‘L.[S/A]’ and ‘[T/S/A]X[L/F].[S/A/G]’ and
they are converted into the form of rules in table 3. The ‘.’ represents the position
p1. Their performance on examples are also shown in the table. We extracted
five best rules from each of the three trained neural networks. The rules and
their performance are shown in table 4. A rule is in the form of ”IF condition,
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Table 1. Each amino acid is assigned to a sequence of 20 bits

amino acid binary code
a 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
f 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
h 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
k 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
l 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
m 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
n 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
p 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
q 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
v 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
w 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 2. Performance of three neural networks

data training accuracy generalization
dataset1 100% 95.7%
dataset2 100% 97.4%
dataset3 100% 95.7%
average 100% 96.3%

THEN class” where class is either of cleavage or non-cleavage. Coverage and
accuracy as defined as follows:

Coverage =
Number of examples matched by the condition part

Total number of examples

Accuracy =
Number of true positive examples

Number of examples matched by the condition part

The five rules extracted generally outperforms the consensus rules. Coverage is
reasonably high and accuracy is very high. The rule ‘L@p2’ in consensus patterns
actually subsumes 11 other rules in the table 3. While its coverage is high (i.e.
55.6%), its accuracy is low compared to others. The rules that we extracted also
contain the ‘L’ at position p2, but we excluded the rule ‘L@p2’ by our 90% of
rule extraction threshold.



1006 Y.-J. Cho and H. Kim

Table 3. Consensus rules and their performance

Consensus Rules dataset1 dataset2 dataset3
coverage accuracy coverage accuracy coverage accuracy

L@p2 55.6 83.1 55.6 83.1 55.6 83.1
L@p2 ∧ S@p1′ 23.1 92.6 23.1 92.6 23.1 92.6
L@p2 ∧ A@p1′ 16.2 94.7 16.2 94.7 16.2 94.7
T@p4 ∧ L@p2 ∧ S@p1′ 6.0 100.0 6.0 100.0 6.0 100.0
T@p4 ∧ L@p2 ∧ A@p1′ 2.6 100.0 2.6 100.0 2.6 100.0
T@p4 ∧ L@p2 ∧ G@p1′ 0.9 100.0 0.9 100.0 0.9 100.0
T@p4 ∧ F@p2 ∧ S@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
T@p4 ∧ F@p2 ∧ A@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
T@p4 ∧ F@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
S@p4 ∧ L@p2 ∧ S@p1′ 6.0 85.7 6.0 85.7 6.0 85.7
S@p4 ∧ L@p2 ∧ A@p1′ 1.7 100.0 1.7 100.0 1.7 100.0
S@p4 ∧ L@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
S@p4 ∧ F@p2 ∧ S@p1′ 1.7 100.0 1.7 100.0 1.7 100.0
S@p4 ∧ F@p2 ∧ A@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
S@p4 ∧ F@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
A@p4 ∧ L@p2 ∧ S@p1′ 3.4 75.0 3.4 75.0 3.4 75.0
A@p4 ∧ L@p2 ∧ A@p1′ 1.7 100.0 1.7 100.0 1.7 100.0
A@p4 ∧ L@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
A@p4 ∧ F@p2 ∧ S@p1′ 0.9 0.0 0.9 0.0 0.9 0.0
A@p4 ∧ F@p2 ∧ A@p1′ 0.0 0.0 0.0 0.0 0.0 0.0
A@p4 ∧ F@p2 ∧ G@p1′ 0.0 0.0 0.0 0.0 0.0 0.0

Table 4. Extracted rules from neural networks trained on three data sets, and their
performance

Data Extracted Rules Coverage Accuracy
dataset 1 L@p2 ∧ S@p1′ 23.1 92.6

L@p2 ∧ A@p1′ 16.2 94.7
L@p2 ∧ T@p4 12.0 100.0
L@p2 ∧ R@p3 10.3 100.0
L@p2 ∧ S@p4 7.7 88.9

dataset 2 L@p2 ∧ E@p2′ 12.8 100.0
L@p2 ∧ T@p4 12.0 100.0
L@p2 ∧ V @p4 12.0 100.0
L@p2 ∧ P@p4 12.0 100.0
L@p2 ∧ K@p2′ 3.4 100.0

dataset 3 L@p2 ∧ V @p4 12.0 100.0
L@p2 ∧ T@p4 12.0 100.0
L@p2 ∧ P@p4 6.0 100.0
L@p2 ∧ T@p3 4.3 100.0
L@p2 ∧ K@p2′ 3.4 100.0
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4 Conclusions

For SARS-CoV cleavage site analysis, we used the approach of rule extraction
from neural networks. We trained 3-layered feedforward neural networks on ge-
nomic sequences of coronaviruses, and then extracted IF-THEN rules from the
neural networks. Their performances are compared to consensus patterns. The
results are promising. Rule mining using neural network classifier can be a useful
tool for cleavage site analysis.
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