Skip to main content

A Self-organized Network for Data Clustering

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

  • 2007 Accesses

Abstract

In this paper, a dynamical model for data clustering is proposed. This approach employs a network consisting of interacting elements with each representing an attribute vector of input data and receiving attractions from other elements within a certain region. Those attractions, determined by a predefined similarity measure, drive the elements to converge to their corresponding cluster center. With this model, neither the number of data clusters nor the initial guessing of cluster centers is required. Computer simulations for clustering of real images and Iris data set are performed. The results obtained so far are very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blake, C., Keogh, E., Merz, C.: UCI Irvine Repository of Machine Learning Databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Chen, K., Wang, D.L.: A dynamically coupled neural oscillator network for image segmentation. Neural Networks 15, 423–439 (2002)

    Article  MATH  Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. John Wiley & Sons, Inc., Chichester (2001)

    MATH  Google Scholar 

  4. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31(3), 264–323 (1999)

    Article  Google Scholar 

  5. Kaneko, K.: Clustering, coding, switching, hierarchical ordering, and coding in a network of chaotic elements. Physica D 41, 137–172 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. König, P., Schillen, T.B.: Binding by temporal structure in multiple feature domains of an oscillatory neuronal network. Biol. Cybern. 70, 397–405 (1994)

    Article  Google Scholar 

  7. Mohan, R., Nevatia, R.: Perceptual organization for scene segmentation and description. IEEE Trans. PAMI 14(6), 616–635 (1992)

    Google Scholar 

  8. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Rhouma, M.B.H., Frigui, H.: Self-organization of pulse-coupled oscillators with application to clustering. IEEE Trans. Neural Networks 23(2), 180–195 (2001)

    Google Scholar 

  10. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  11. Wang, D.L., Liu, X.: Scene analysis by integrating primitive segmentation and associative memory. IEEE Trans. SMC, Part B: Cybernetics 32, 254–268 (2002)

    Article  Google Scholar 

  12. Zhao, L., Macau, E.E.N., Omar, N.: Scene segmentation of the chaotic oscillator network. Int. J. Bif. Chaos 10(7), 1697–1708 (2000)

    Article  Google Scholar 

  13. Zhao, L., Macau, E.E.N.: A network of globally coupled chaotic maps for scene segmentation. IEEE Trans. Neural Networks 12(6), 1375–1385 (2001)

    Article  Google Scholar 

  14. Zhao, L., Carvalho, A.C.P.L.F., Li, Z.-H.: Pixel clustering by adaptive moving and chaotic synchronization. IEEE Trans. Neural Networks 15(5), 1176–1185 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, L., Damiance, A.P.G., Carvalho, A.C.P.L.F. (2005). A Self-organized Network for Data Clustering. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_158

Download citation

  • DOI: https://doi.org/10.1007/11539087_158

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics