Abstract
This paper deals with the estimation of the linear and the nonlinear quantile regressions using the idea of support vector machine. Accordingly, the optimization problem is transformed into the Lagrangian dual problem, which is easier to solve. In particular, for the nonlinear quantile regression the idea of kernel function is introduced, which allows us to perform operations in the input space rather than the high dimensional feature space. Experimental results are then presented which illustrate the performance of the proposed method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chang, C., Lin, C.: LIBSVM: A library for support vector machines (2001)
Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines. Cambridge University Press, Cambridge (2000)
Flake, G.W., Lawrence, S.: Efficient SVM regression training with SMO. Machine Learning 46, 271–290 (2002)
Gunn, S.: Support vector machines for classification and regression, ISIS Technical Report, University of Southampton (1998)
Kecman, V.: Learning and soft computing, support vector machines, neural networks and fuzzy logic moldes. The MIT Press, Cambridge (2001)
Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978)
Koenker, R., D’Orey, V.: Computing regression quantiles. Applied Statistics 36, 383–393 (1987)
Koenker, R., Park, B.J.: An interior point algorithm for nonlinear quantile regression. Journal of Econometrics 71, 265–283 (1996)
Koenker, R., Hallock, K.F.: Quantile regression. Journal of Economic Perspectives 15, 143–156 (2001)
Platt, J.: Using sparseness and analytic QP to speed training of support vector machines. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems, vol. 11 (1999)
Smola, A., Schölkopf, B.: On a kernel-based method for pattern recognition, regression, approximation and operator inversion. Algorithmica 22, 211–231 (1998)
Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)
Vapnik, V.N.: Statistical learning theory. Springer, New York (1998)
Wang, L. (ed.): Support vector machines: theory and application. Springer, New York (2005)
Yu, K., Lu, Z., Stander, J.: Quantile regression: applications and current research area. The Statistician 52, 331–350 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hwang, C., Shim, J. (2005). A Simple Quantile Regression via Support Vector Machine. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_66
Download citation
DOI: https://doi.org/10.1007/11539087_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28323-2
Online ISBN: 978-3-540-31853-8
eBook Packages: Computer ScienceComputer Science (R0)