Skip to main content

Modelling of Chaotic Systems with Recurrent Least Squares Support Vector Machines Combined with Reconstructed Embedding Phase Space

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3610))

Included in the following conference series:

Abstract

A new strategy of modelling of chaotic systems is presented. First, more information is acquired utilizing the reconstructed embedding phase space. Then, based on the Recurrent Least Squares Support Vector Machines (RLS-SVM), modelling of the chaotic system is realized. We use the power spectrum and dynamic invariants involving the Lyapunov exponents and the correlation dimension as criterions, and then apply our method to the Chua‘s circuit time series. The simulation of dynamic invariants between the origin and generated time series shows that the proposed method can capture the dynamics of the chaotic time series effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brillinger, D.R.: Time series, Data Analysis and Theory. McGraw-Hill, New York (1981)

    MATH  Google Scholar 

  2. Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59, 845 (1987)

    Article  MathSciNet  Google Scholar 

  3. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge Univ. Press, Cambridge (1997)

    MATH  Google Scholar 

  4. Meyer, Y., Ryan, R.D.: Wavelets: Algorithms and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1993)

    MATH  Google Scholar 

  5. Han, M., Xi, J., Xu, S., Yin, F.L.: Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Trans. Signal Processing 52, 3409–3416 (2004)

    Article  MathSciNet  Google Scholar 

  6. Wang, L.P., Teo, K.K., Lin, Z.: Predicting time series using wavelet packet neural networks. In: Proc. IJCNN, pp. 1593–1597 (2001)

    Google Scholar 

  7. Castillo, O., Melin, P.: Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Trans. Neural Networks 13, 1395–1408 (2002)

    Article  Google Scholar 

  8. Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks and Fuzzay Logic Models. The MIT Press, Cambridge (2001)

    Google Scholar 

  9. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  10. Wang, L.P. (ed.): Support Vector Machines: Theory and Application. Springer, Heidelberg (2005)

    Google Scholar 

  11. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  12. Suykens, J.A.K., Vandewalle, J.: Recurrent Least Squares Support Vector Machines. IEEE Trans. on Circuits and System-I: Fundamental Theory and Applications 47, 1109–1114 (2000)

    Article  Google Scholar 

  13. Kaplan, D., Glass, L.: Understanding nonlinear dynamics. Springer, New York (1995)

    MATH  Google Scholar 

  14. Takens, F.: Detecting strange attractors in fluid turbulence. In: Rand, D., Young, L.S. (eds.) Dynamical systems and turbulence, pp. 366–381. Springer, Berlin (1981)

    Chapter  Google Scholar 

  15. Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase-space reconstrution using a geometrical construction. Phys. Rev. A 45, 3403 (1992)

    Article  Google Scholar 

  16. Cao, L.: Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D 110, 43–50 (1997)

    Article  MATH  Google Scholar 

  17. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining lyapunov exponents from a time series. Phys. D 16, 285–317 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  19. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Letters 50, 346–349 (1983)

    Article  MathSciNet  Google Scholar 

  20. Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33, 1072–1118 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiang, Z., Zhang, T., Sun, J. (2005). Modelling of Chaotic Systems with Recurrent Least Squares Support Vector Machines Combined with Reconstructed Embedding Phase Space. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3610. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539087_73

Download citation

  • DOI: https://doi.org/10.1007/11539087_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28323-2

  • Online ISBN: 978-3-540-31853-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics