Skip to main content

A Multi-cluster Grid Enabled Evolution Framework for Aerodynamic Airfoil Design Optimization

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3611))

Included in the following conference series:

  • 2038 Accesses

Abstract

Advances in grid computing have recently sparkled the research and development of Grid problem solving environments for complex design. Parallelism in the form of distributed computing is a growing trend, particularly so in the optimization of high-fidelity computationally expensive design problems in science and engineering. In this paper, we present a powerful and inexpensive grid enabled evolution framework for facilitating parallelism in hierarchical parallel evolutionary algorithms. By exploiting the grid evolution framework and a multi-level parallelization strategy of hierarchical parallel GAs, we present the evolutionary optimization of a realistic 2D aerodynamic airfoil structure. Further, we study the utility of hierarchical parallel GAs on two potential grid enabled evolution frameworks and analysis how it fares on a grid environment with multiple heterogeneous clusters, i.e., clusters with differing specifications and processing nodes. From the results, it is possible to conclude that a grid enabled hierarchical parallel evolutionary algorithm is not mere hype but offers a credible alternative, providing significant speed-up to complex engineering design optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning (1989)

    Google Scholar 

  2. Olhofer, M., Arima, T., Sonoda, T., Sendhoff, B.: Optimization of a stator blade used in a transonic compressor cascade with evolution strategies. In: Adaptive Computing in Design and Manufacture (ACDM), pp. 45–54. Springer, Heidelberg (2000)

    Google Scholar 

  3. Hajela, P., Lee, J.: Genetic algorithms in multidisciplinary rotor blade design. In: Proceedings of 36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, New Orleans, pp. 2187–2197 (1995)

    Google Scholar 

  4. Ong, Y.S., Keane, A.J.: Meta-Lamarckian in Memetic Algorithm. IEEE Trans. Evolutionary Computation 8(2), 99–110 (2004)

    Article  Google Scholar 

  5. Parmee., I.C., Cvetkovi., D., Watson, A.H., Bonham, C.R.: Multi objective satisfaction within an interactive evolutionary design environment. Evolutionary Computation (2000)

    Google Scholar 

  6. Nair, P.B., Keane, A.J.: Passive Vibration Suppression of Flexible Space Structures via Optimal Geometric Redesign. AIAA Journal 39(7), 1338–1346 (2001)

    Article  Google Scholar 

  7. Baluja, S.: The Evolution of Genetic Algorithms: Towards Massive Parallelism. In: Machine Learning: Proceedings of the Tenth International Conference (1993)

    Google Scholar 

  8. Nowostawski, M., Poli, R.: Parallel Genetic Algorithm Taxonomy. In: Proceedings of the Third International conference on knowledge-based intelligent information engineering systems (KES 1999), Adelaide, August 1999, pp. 88–92. IEEE, Los Alamitos (1999)

    Google Scholar 

  9. Cantu-Paz, E.: A Survey of Parallel Genetic Algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)

    Google Scholar 

  10. Baluja, S.: The Evolution of Genetic Algorithms: Towards Massive Parallelism. In: Machine Learning: Proceedings of the Tenth International Conference (1993)

    Google Scholar 

  11. Huyse, L., et al.: Aerodynamic Shape Optimization of Two-dimensional Airfoils Under Uncertain Operating Conditions. ICASE NASA Langley Research Centre (2001)

    Google Scholar 

  12. Padula, S.L., Li, W.: Robust Airfoil Optimization in High Resolution Design Space. ICASE NASA Langley Research Centre (2002)

    Google Scholar 

  13. Ong, Y.S., Lum, K.Y., Nair, P.B., Shi, D.M., Zhang, Z.K.: Global Convergence of Unconstrained and Bound Constrained Surrogate-Assisted Evolutionary Search in Aerody-namic Shape Design Solvers. In: IEEE Congress on Evolutionary Computation, Special Session on Design Optimization with Evolutionary Computation (2003)

    Google Scholar 

  14. Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  15. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. International J. Supercomputer Applications 15(3) (2001)

    Google Scholar 

  16. Baker, M., Buyya, R., Laforenza, D.: The Grid: International Efforts in Global Computing. In: International Conference on Advances in Infrastructures for Electronic Business, Science, and Education on the Internet (2000)

    Google Scholar 

  17. Cox, J.: Grid enabled optimisation and design search for engineering (Geodise). In: NeSC Workshop on Applications and Testbeds on the Grid (2002)

    Google Scholar 

  18. Parashar, M., et al.: Application of Grid-enabled Technologies for Solving Optimization Problems in Data-Driven Reservoir Studies. Submitted to Elsevier Science (2004)

    Google Scholar 

  19. Price, A.R., et al.: Tuning GENIE Earth System Model Components using a Grid Enabled Data Management System. School of Engineering Sciences, University of Soton, UK

    Google Scholar 

  20. Foster, I.: The Globus Toolkit for Grid Computing. In: Proceedings of the 1st International Symposium on Cluster Computing and the Grid (2001)

    Google Scholar 

  21. Agrawal, S., Dongarra, J., Seymour, K., Vadhiyar, S.: NetSolve: past, present, and future; a look at a grid enabled server (2002)

    Google Scholar 

  22. Ho, Q.T., Cai, W.T., Ong, Y.S.: Design and Implementation of An Efficient Multi-cluster GridRPC System. Cluster and Computing Grid (2005)

    Google Scholar 

  23. Globus: Information Services/MDS, http://www-unix.globus.org/toolkit/mds

  24. Massie, M., Chun, B., Culler, D.: The Ganglia Distributed Monitoring System: Design, Implementation, and Experience. Technical report, University of California, Berkeley (2003)

    Google Scholar 

  25. Tuecke, S.: Grid Security Infrastructure (GSI) Roadmap, Internet Draft Document: draft-gridforum-gsi-roadmap-02.txt (2001)

    Google Scholar 

  26. The Globus Project, GridFTP Universal Data Transfer for the Grid, The Globus Project White Paper (2000)

    Google Scholar 

  27. The Globus Resource Allocation Manager (GRAM), http://www-unix.globus.org/developer/resource-management.html

  28. Geer, D.: Grid Computing Using the Sun Grid Engine, Technical Enterprises, Inc. (2003)

    Google Scholar 

  29. Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.,, C.-G.: A Computation Management Agent for Multi-Institutional Grids. In: Proceedings of the Tenth IEEE Symposium on High Performance Distributed Computing (HPDC10) (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ng, HK. et al. (2005). A Multi-cluster Grid Enabled Evolution Framework for Aerodynamic Airfoil Design Optimization. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539117_151

Download citation

  • DOI: https://doi.org/10.1007/11539117_151

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28325-6

  • Online ISBN: 978-3-540-31858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics