Skip to main content

Data Fusion for Fault Diagnosis Using Dempster-Shafer Theory Based Multi-class SVMs

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3611))

Included in the following conference series:

Abstract

The multi-class probability SVM (MPSVM) is designed by training the sigmoid function to map the output of each binary class SVM into a posterior probability, and then combining these learned binary-class PSVMs using one-against-all strategy. The method of basic probability assignment is proposed according to the probabilistic output and performance of the PSVM. The outputs of all the binary-class PSVMs comprising an MPSVM are represented in the frame of Dempster-Shafer theory. A Dempster-Shafer theory based multi-class SVM (DSMSVM) is constructed by using the combination rule of evidences. To deal with the distributed multi-source multi-class problem, the DSMSVM is trained corresponding to each information source, and then the Dempster-Shafer theory is used to combine these learned DSMSVMs. Our proposed method is applied to fault diagnosis of a diesel engine. The experimental results show that the accuracy and robustness of fault diagnosis can be improved by using our proposed approach.

Supported by the National Key Fundamental Research Program (2002cb312200), and partially supported by the National High Technology Research and Development Program (2002AA412010), and the Natural Science Foundation of China (60174038).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tay, F.E.H., Shen, L.: Fault Diagnosis Based on Rough Set Theory. Engineering Application of Artificial Intelligence 16, 39–43 (2003)

    Article  Google Scholar 

  2. Shen, L., Tay, F.E.H., Qu, L., Shen, Y.: Fault Diagnosis Using Rough Sets Theory. Computers in Industry 43, 61–72 (2000)

    Article  Google Scholar 

  3. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

    Article  Google Scholar 

  4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other Kernel-based Learning Methods. University Press, Cambridge (2000)

    Google Scholar 

  5. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  6. Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Wang, L.P. (ed.): Support Vector Machines: Theory and Application. Springer, Heidelberg (2005)

    Google Scholar 

  8. Hsu, C.-W., Lin, C.-J.: A Comparison of Methods for Multi-class Support Vector Machines. IEEE Transactions on Neural Networks 13(2), 415–425 (2002)

    Article  Google Scholar 

  9. Platt, J.C.: Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. In: Smola, A.J., Bartlett, P., Scholkopf, B., Schuur-mans, D. (eds.) Advances in Large Margin Classifiers. MIT Press, Cambridge (1999)

    Google Scholar 

  10. Beynona, M., Coskerb, D., Marshallb, D.: An Expert System for Multi-criteria Decision Making Using Dempster-Shafer Theory. Expert Systems with Applications 20, 357–367 (2001)

    Article  Google Scholar 

  11. Benediktsson, J.A., Sveinsson, J.R., Ersoy, O.K., Swain, P.H.: Parallel Consensual Neural Networks. IEEE Transactions on Neural Networks 8(1), 54–64 (1997)

    Article  Google Scholar 

  12. Hall, D.L., Llinas, J.: An Introduction to Multisensor Data Fusion. Proceedings of the IEEE 85(1), 6–23 (1997)

    Article  Google Scholar 

  13. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1981)

    MATH  Google Scholar 

  14. Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large Margin DAG’s for Multiclass Classification. In: Advances in Neural Information Processing Systems, vol. 12, pp. 547–553. MIT Press, Cambridge (2000)

    Google Scholar 

  15. Lee, Y., Lin, Y., Wahba, G.: Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data. Journal of the American Statistical Association 99(465), 67–81 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guan, J.W., Bell, D.A.: Evidence Theory and its Applications, vol. 1. North-Holland-Amsterdam, New York (1992)

    MATH  Google Scholar 

  17. Yen, J.: GERTIS: A Dempster-Shafer Approach to Diagnosing Hierarchical Hypotheses. Communications of the ACM 5(32), 573–585 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, Z., Cai, Y., Li, Y., Li, Y., Xu, X. (2005). Data Fusion for Fault Diagnosis Using Dempster-Shafer Theory Based Multi-class SVMs. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539117_27

Download citation

  • DOI: https://doi.org/10.1007/11539117_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28325-6

  • Online ISBN: 978-3-540-31858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics