Skip to main content

An Application of Support Vector Machines for Customer Churn Analysis: Credit Card Case

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3611))

Included in the following conference series:

  • 1865 Accesses

Abstract

This study investigates the effectiveness of support vector machines (SVM) approach in detecting the underlying data pattern for the credit card customer churn analysis. This article introduces a relatively new machine learning technique, SVM, to the customer churning problem in attempt to provide a model with better prediction accuracy. To compare the performance of the proposed model, we used a widely adopted and applied Artificial Intelligence (AI) method, back-propagation neural networks (BPN) as a benchmark. The results demonstrate that SVM outperforms BPN. We also examine the effect of the variability in performance with respect to various values of parameters in SVM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ben-David, S., Lindenbaum, M.: Learning distributions by their density levels: A paradigm for learning without a teacher. Journal of Computer and System Sciences 55, 171–182 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brown, M.P., Grudy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M., Haussler, D.: Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of National Academy of Sciences 97(1), 262–267 (2000)

    Article  Google Scholar 

  3. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 955–974 (1998)

    Article  Google Scholar 

  4. Burges, C.J.C., Scholkopf, B.: Improving the accuracy and speed of support vector machines. In: Mozer, M., Jordan, M., Petche, T. (eds.) Advances in Neural information processing systems. MIT Press, Cambridge (1997)

    Google Scholar 

  5. Cortes, C., Vapnik, V.N.: Support vector networks. Machine Learning, vol. 20, pp. 273–297 (1995)

    Google Scholar 

  6. Friedman, C.: Credit model technical white paper. Standard and Poor’s. McGraw-Hill, New York (2002)

    Google Scholar 

  7. Haykin, S.: Neural networks: A comprehensive foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  8. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class support vector machines, Technical Report, National Taiwan University, Taiwan (2001)

    Google Scholar 

  9. Huang, W., Nakamori, Y., Wang, S.Y.: Forecasting stock market movement direction with support vector machine. Computers & Operations Research (2004)

    Google Scholar 

  10. Huang, Z., Chen, H., Hsu, C.J., Chen, W.H., Wu, S.: Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems 37, 543–558 (2004)

    Article  Google Scholar 

  11. Jaakkola, T.S., Haussler, D.: Esploiting generative models in discriminative classifiers. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems. MIT Press, Cambridge (1998)

    Google Scholar 

  12. Joachims, T.: Learning to classify text using support vector machines. Kluwer Academic Publishers, London (2002)

    Google Scholar 

  13. Kim, K.J.: Financial time series forecasting using support vector machines. Neurocomputing 55(1-2), 307–319 (2003)

    Article  Google Scholar 

  14. Lariviere, B., Van den Poel, D.: Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: the case of financial services. Expert Systems with Applications 27, 277–285 (2004)

    Article  Google Scholar 

  15. Lee, K.C., Chung, N.H., Kim, J.K.: A fuzzy cognitive map approach to integrating explicit knowledge and tacit knowledge: emphasis on the churn analysis of credit card holders. Information Systems Review 11(4), 113–133 (2001)

    MathSciNet  Google Scholar 

  16. Lee, K.C., Chung, N.H., Shin, K.S.: An artificial intelligence-based data mining approach to extracting strategies for reducing the churning rate in credit card industry. Journal of Intelligent Information Systems 8(2), 15–35 (2002)

    Google Scholar 

  17. Mukherjee, S., Osuna, E., Girosi, F.: Nonlinear prediction of chaotic time series using support vector. In: Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, pp. 511–520 (1997)

    Google Scholar 

  18. Osuna, E., Freund, R., Girosi, F.: Training support vector machines: An application to face detection. In: Proceedings of Computer Vision and Pattern Recognition, pp. 130–136 (1997)

    Google Scholar 

  19. Reichheld, F.F., Sasser Jr., W.E.: Zero defections: quality comes to service. Harvard Business Review 68(5), 105–111 (1990)

    Google Scholar 

  20. Shin, K.S., Lee, T.S., Kim, H.J.: An application of support vector machines in bankruptcy prediction model. Expert Systems with Applications 28, 127–135 (2005)

    Article  Google Scholar 

  21. Stoneking, D.: Stoneking, D.: Improving the manufacturability of electronic designs. IEEE Spectrum 36(6), 70–76 (1999)

    Article  Google Scholar 

  22. Tarassenko, L., Hayton, P., Cerneaz, N., Brady, M.: Novelty detection for the identification of masses in mammograms. In: Proceedings Fourth IEEE International Conference on Arificial Neural Networks, Cambridge, pp. 442–447 (1995)

    Google Scholar 

  23. Tay, F.E.H., Cao, L.: Application of support vector machines in financial time series forecasting. Omega 29, 309–317 (2001)

    Article  Google Scholar 

  24. Tay, F.E.H., Cao, L.J.: Modified support vector machines in financial time series forecasting. Nerocomputing 48, 847–861 (2002)

    Article  MATH  Google Scholar 

  25. Van Gestel, T., Suykens, J.A.K., Baestaens, D.-E., Lambrachts, A., Lanckriet, G., Vandaele, B., De Moor, B., Vandewalle, J.: Financial time series prediction using least squares support vector machines within the evidence frame work. IEEE Transactions on Neural Networks 12(4), 809–821 (2001)

    Article  Google Scholar 

  26. Vapnik, V.N.: The nature of Statistical learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  27. Vapnik, V.N.: Statistical learning theory. John Wiley and Sons, New York (1998)

    MATH  Google Scholar 

  28. Wei, C.P., Chiu, I.T.: Turning telecommunications call details to churn prediction: a data mining approach. Expert Systems with Applications 23, 103–112 (2002)

    Article  Google Scholar 

  29. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques with java implementations. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  30. Zien, A., Ratsch, G., Mika, S., Scholkopf, B., Lengauer, T., Muller, K.-R.: Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16(9), 799–807 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, S., Shin, Ks., Park, K. (2005). An Application of Support Vector Machines for Customer Churn Analysis: Credit Card Case. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539117_91

Download citation

  • DOI: https://doi.org/10.1007/11539117_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28325-6

  • Online ISBN: 978-3-540-31858-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics