Skip to main content

Deriving Weak Bisimulation Congruences from Reduction Systems

  • Conference paper
CONCUR 2005 – Concurrency Theory (CONCUR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3653))

Included in the following conference series:

Abstract

The focus of process calculi is interaction rather than computation, and for this very reason: (i) their operational semantics is conveniently expressed by labelled transition systems (LTSs) whose labels model the possible interactions with the environment; (ii) their abstract semantics is conveniently expressed by observational congruences. However, many current-day process calculi are more easily equipped with reduction semantics, where the notion of observable action is missing. Recent techniques attempted to bridge this gap by synthesising LTSs whose labels are process contexts that enable reactions and for which bisimulation is a congruence. Starting from Sewell’s set-theoretic construction, category-theoretic techniques were defined and based on Leifer and Milner’s relative pushouts, later refined by Sassone and the fourth author to deal with structural congruences given as groupoidal 2-categories.

Building on recent works concerning observational equivalences for tile logic, the paper demonstrates that double categories provide an elegant setting in which the aforementioned contributions can be studied. Moreover, the formalism allows for a straightforward and natural definition of weak observational congruence.

This work has been partly supported by the EU within the project HPRN-CT-2002-00275 SegraVis (Syntactic and Semantic Integration of Visual Modelling Techniques).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bruni, R., de Frutos-Escrig, D., Martí-Oliet, N., Montanari, U.: Bisimilarity congruences for open terms and term graphs via tile logic. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 259–274. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Bruni, R., Meseguer, J., Montanari, U.: Symmetric and cartesian double categories as a semantic framework for tile logic. Mathematical Structures in Computer Science 12, 53–90 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruni, R., Montanari, U., Rossi, F.: An interactive semantics of logic programming. Theory and Practice of Logic Programming 1, 647–690 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bruni, R., Montanari, U., Sassone, V.: Observational congruences for dynamically reconfigurable tile systems. Theor. Comp. Sci. 335(2-3), 331–372 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Corradini, A., Gadducci, F.: Rewriting on cyclic structures: Equivalence between the operational and the categorical description. Informatique Théorique et Applications/Theoretical Informatics and Applications 33, 467–493 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ferrari, G., Montanari, U.: Tile formats for located and mobile systems. Inform. and Comput. 156, 173–235 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gadducci, F., Heckel, R., Llabrés, M.: A bi-categorical axiomatisation of concurrent graph rewriting. In: Nickel, K. (ed.) Proc. of CTCS 1999. Electr. Notes in Theor. Comp. Sci, vol. 29, Elsevier, Amsterdam (1975)

    Google Scholar 

  8. Gadducci, F., Montanari, U.: The tile model. In: Proof, Language and Interaction: Essays in Honour of Robin Milner, pp. 133–166. MIT Press, Cambridge (2000)

    Google Scholar 

  9. Jensen, O.H.: Bigraphs and weak bisimilarity. Talk at Dagstuhl Seminar 04241 (June 2004)

    Google Scholar 

  10. Jensen, O.H., Milner, R.: Bigraphs and mobile processes. Technical Report 570, Computer Laboratory, University of Cambridge (2003)

    Google Scholar 

  11. Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Melliès, P.A.: Double categories: A modular model of multiplicative linear logic. Mathematical Structures in Computer Science 12, 449–479 (2002)

    Article  MATH  Google Scholar 

  13. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comp. Sci. 96, 73–155 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Milner, R.: The polyadic π-calculus: A tutorial. In: Logic and Algebra of Specification. Nato ASI Series F, vol. 94, pp. 203–246. Springer, Heidelberg (1993)

    Google Scholar 

  15. Palmquist, P.H.: The double category of adjoint squares. In: Midwest Category Seminar. Lectures Notes in Mathematics, vol. 195, pp. 123–153. Springer, Heidelberg (1971)

    Chapter  Google Scholar 

  16. Power, A.J.: An abstract formulation for rewrite systems. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 300–312. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  17. Rydehard, D.E., Stell, E.G.: Foundations of equational deductions: A categorical treatment of equational proofs and unification algorithms. In: Pitt, D.H., Rydeheard, D.E., Poigné, A. (eds.) Category Theory and Computer Science. LNCS, vol. 283, pp. 114–139. Springer, Heidelberg (1987)

    Google Scholar 

  18. Sassone, V., Sobociński, P.: Deriving bisimulation congruences using 2-categories. Nordic Journal of Computing 10, 163–183 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Sewell, P.: From rewrite rules to bisimulation congruences. Theor. Comp. Sci. 274, 183–230 (2004)

    Article  MathSciNet  Google Scholar 

  20. Street, R.H.: Categorical structures. In: Handbook of Algebra, vol. 1, pp. 529–577. North-Holland, Amsterdam (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruni, R., Gadducci, F., Montanari, U., Sobociński, P. (2005). Deriving Weak Bisimulation Congruences from Reduction Systems. In: Abadi, M., de Alfaro, L. (eds) CONCUR 2005 – Concurrency Theory. CONCUR 2005. Lecture Notes in Computer Science, vol 3653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539452_24

Download citation

  • DOI: https://doi.org/10.1007/11539452_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28309-6

  • Online ISBN: 978-3-540-31934-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics