Abstract
This paper studies the denotational semantics of the typed asynchronous π-calculus. We describe a simple game semantics of this language, placing it within a rich hierarchy of games models for programming languages,
A key element of our account is the identification of suitable categorical structures for describing the interpretation of types and terms at an abstract level. It is based on the notion of closed Freyd category, establishing a connection between our semantics, and that of the λ-calculus. This structure is also used to define a trace operator, with which name binding is interpreted. We then show that our categorical characterization is sufficient to prove a weak soundness result.
Another theme of the paper is the correspondence between justified sequences, on which our model is based, and traces in a labelled transition system in which only bound names are passed. We show that the denotations of processes are equivalent, via this correspondence, to their sets of traces. These results are used to show that the games model is fully abstract with respect to may-equivalence.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative linear logic. Journal of Symbolic Logic 59, 543–574 (1994)
Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information and Computation 163, 409–470 (2000)
Berger, M., Honda, K., Yoshida, N.: Sequentiality and the π-calculus. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044, p. 29. Springer, Heidelberg (2001)
Berger, M., Honda, K., Yoshida, N.: Strong normalization in the π-calculus. In: Proceedings of LICS 2001. IEEE Press, Los Alamitos (2001)
Boudol, G.: Asynchrony in the pi-calculus. Technical Report 1702, INRIA (1992)
Ghica, D., McCusker, G.: The regular language semantics of second-order Idealised Algol. Theoretical Computer Science (2003) (to appear)
Ghica, D., Murawski, A.: Angelic semantics of fine-grained concurrency. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 211–225. Springer, Heidelberg (2004)
Harmer, R., McCusker, G.: A fully abstract games semantics for finite nondeterminism. In: Proceedings of the Fourteenth Annual Symposium on Logic in Computer Science, LICS 1999. IEEE Computer Society Press, Los Alamitos (1998)
Hennessy, M.: A fully abstract denotational semantics for the π-calculus. Technical Report 041996, University of Sussex (COGS) (2996)
Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)
Hyland, J.M.E., Ong, C.-H.L.: On full abstraction for PCF: I, II and III. Information and Computation 163, 285–408 (2000)
Jagadeesan, L.J., Jagadeesan, R.: Causality and true concurrency: A data-flow analysis of the pi-calculus. In: Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, Springer, Heidelberg (1995)
Jeffrey, A.S.A., Rathke, J.: Contextual equivalence for higher-order pi-calculus revisited. Technical Report 0402, University of Sussex (COGS) (2002)
Jeffrey, A.S.A., Rathke, J.: A fully abstract may-testing semantics for concurrent objects. In: Proceedings of LICS 2002, pp. 101–112 (2002)
Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb. Phil. Soc. 119, 447–468 (1996)
Laird, J.: A game semantics of ICSP. In: Proceedings of MFPS XVII. Electronic notes in Theoretical Computer Science, vol. 45. Elsevier, Amsterdam (2001)
Laird, J.: A categorical semantics of higher-order store. In: Proceedings of CTCS 2002. ENTCS, vol. 69. Elsevier, Amsterdam (2002)
Laird, J.: A game semantics of local names and good variables. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 289–303. Springer, Heidelberg (2004)
de Nicola, R., Boreale, M., Pugliese, R.: Trace and testing equivalence on asynchronous processes. Information and Computation 172(2), 139–164 (2002)
Moggi, E., Fiore, M., Sangiorgi, D.: A fully abstract model for the π-calculus. In: Proceedings of LICS 1996 (1996)
Malacaria, P., Hankin, C.: Generalised flowcharts and games. In: Proceedings of the 25th International Colloquium on Automata, Langugages and Programming (1998)
McCusker, G.: Games and full abstraction for a functional metalanguage with recursive types. PhD thesis, Imperial College London, Published by Cambridge University Press (1996)
Milner, R.: Polyadic π-calculus: a tutorial. In: Proceedings of the Marktoberdorf Summer School on Logic and Algebra of Specification (1992)
Power, J., Thielecke, H.: Environments in Freyd categories and k-categories. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, p. 625. Springer, Heidelberg (1999)
Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis, University of Edinburgh (1993)
Stark, I.: A fully abstract domain model for the π-calculus. In: Proceedings of LICS 1996 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Laird, J. (2005). A Game Semantics of the Asynchronous π-Calculus. In: Abadi, M., de Alfaro, L. (eds) CONCUR 2005 – Concurrency Theory. CONCUR 2005. Lecture Notes in Computer Science, vol 3653. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539452_8
Download citation
DOI: https://doi.org/10.1007/11539452_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28309-6
Online ISBN: 978-3-540-31934-4
eBook Packages: Computer ScienceComputer Science (R0)