Skip to main content

Feedback Control of Humanoid Robot Locomotion

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

As an assistant tool for human beings, humanoid robot is expected to cooperate with people to do certain jobs. Therefore, it must have high intelligence to adapt to common working condition. The objective of this paper is to propose an adaptive fuzzy logic control (FLC) method to improve system adaptability and stability, which can adjust hip and ankle joint based on sensor information. Furthermore, it can real time adjust controller parameters to improve FLC performance. Based on sensor information, humanoid robot can get environment and inherent situation and use the adaptive-FLC to realize stable locomotion. The effectiveness of the proposed method is shown with simulations based on the parameters of the “IHR-1” humanoid robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Park, C.W., Cho, Y.W.: T-S model based indirect adaptive fuzzy control using online parameter estimation. IEEE Transactions On Systems, Man, and Cybernetics-Part B: Cybernetics 34, 2293–2302 (2004)

    Article  Google Scholar 

  2. Pratihar, D.K., Deb, K., Ghosh, A.: Optimal path and gait generations simultaneously of a six-legged robot using a GA-fuzzy approach. Robotics and Autonomous Systems 41, 1–20 (2001)

    Article  Google Scholar 

  3. Sun, F., Sun, Z., Li, L., Li, H.X.: Neuro-fuzzy adaptive control based on dynamic inversion for robotic manipulators. Fuzzy Sets and Systems 124, 117–133 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bonne, G.N., Hodgins, J.K.: Slipping and tripping reflexes for bipedal robots. Autonomous Robots 4, 259–271 (1997)

    Article  Google Scholar 

  5. Park, J.H., Kwon, O.: Reflex control of biped robot locomotion on a slippery surface. In: IEEE Int. Conf. On Robotics and Automation, Korea, pp. 4134–4139 (2001)

    Google Scholar 

  6. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The Development of Honda Humanoid Robot. In: IEEE Int. Conf. Robotics and Automation, Belgium, pp. 1321–1326 (1998)

    Google Scholar 

  7. Vukobratovic, M., Potkonjak, V., Tzafestas, S.: Human and humanoid dynamics. Journal of Intelligent And Robotics Systems 41, 65–84 (2004)

    Article  Google Scholar 

  8. Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Arai, H., et al.: Planning walking patterns for a biped robot. IEEE Transactions On Robotics And Automation 17, 280–289 (2001)

    Article  Google Scholar 

  9. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE Transactions on Neural Networks 2, 302–309 (1991)

    Article  Google Scholar 

  10. Ishida, T., Kuroki, Y.: Sensory system of a small biped entertainment robot. Advanced Robotics 18, 1039–1052 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lei, X., Su, J. (2005). Feedback Control of Humanoid Robot Locomotion. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_112

Download citation

  • DOI: https://doi.org/10.1007/11539506_112

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics