Skip to main content

Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

The novel fuzzy sliding mode control problem is presented for a class of uncertain nonlinear systems. The Takagi-Sugeno (T-S) fuzzy model is employed to represent a class of complex uncertain nonlinear system. A virtual state feedback technology is proposed to design the sliding mode plane. Based on Lyapunov stability theory, sufficient conditions for design of the fuzzy sliding model control are given. Design of the sliding mode controller based on reaching law concept is developed, which to ensure system trajectories from any initial states asymptotically convergent to sliding mode plane. The global asymptotic stability is guaranteed. A numerical example with simulation results is given to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vidysagar, M.: Nonlinear Systems Analysis. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Wang, L.X.: Adaptive fuzzy systems and control: design and stability analysia. Prentice-Hall, Upper Saddle River (1994)

    Google Scholar 

  3. Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control system. Fuzzy Sets Syst. 45, 135–156 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Tanaka, K., Sano, M.: Fuzzy stability criterion of a class of linear. Inform. Sci. 71, 3–26 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stability, H∞ control theory and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4, 1–13 (1996)

    Article  Google Scholar 

  6. Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6, 250–265 (1998)

    Article  Google Scholar 

  7. Reng, G., Frank, P.M.: Approaches to quadratic stabilization of uncertain fuzzy dynamic system. Cir. Syst. 48, 760–769 (2001)

    Google Scholar 

  8. Lee, K.R., Kim, J.H.: Output feedback robust H∞control of uncertain fuzzy dynamic systems with time-varying delay. IEEE Trans. Fuzzy Syst. 8, 657–664 (2000)

    Article  Google Scholar 

  9. Guan, X.-P., Chen, C.-l.: Delay-dependent guaranteed const control for T-S fuzzy systems with time delays. IEEE Trans. Fuzzy Syst. 12, 236–249 (2004)

    Article  MATH  Google Scholar 

  10. Wang, Z., Liu, X., Ho, D.W.C.: A note on the robust stability of uncertain stochastic fuzzy systems with time-delays. IEEE Trans. on Syst., man, and cyber-part A: Syst. and Huma 34, 570–576 (2004)

    Article  Google Scholar 

  11. Wang, R.-J., Lin, W.-W., Wang, W.-J.: Stabilizability of linear quadratic state feedback for uncertain fuzzy time-delay systems. IEEE Trans. on Syst., man, and cyber-part B: Cybernetics 1, 1–4 (2004)

    Google Scholar 

  12. Liu, X., Zhang, Q.: New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica 39, 1571–1582 (2003)

    Article  MATH  Google Scholar 

  13. Drakunov, S.V., Utkin, V.I.: Sliding mode control in dynamic system. International Journal of Control 55, 1029–1037 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gouaisbaut, F., Darnbrine, M., Richard, J.P.: Robust control of delay systems: a sliding mode control design via LMI. Systems & Control Letters 46, 219–230 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Oucheriah, S.: Exponential stabilization of linear delayed systems using sliding-mode controllers. IEEE transaction on circuit and systems, 1: fundamental theory and application 50(6), 826–830 (2003)

    Article  MathSciNet  Google Scholar 

  16. Li, X., Decarlo, R.A.: Robust sliding mode control of uncertain time delay systems. International Journal of Control 76(13), 1296–1305 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Niu, Y., Lam, J., Wang, X.: Sliding-mode control for uncertain neutral delay systems. IEE Proceedings of control theory and applications 151(1), 38–44 (2004)

    Article  Google Scholar 

  18. Yu, X., Man, A., Wu, B.: Design of fuzzy sliding mode control systems. Fuzzy Sets and Systems 95, 295–306 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear matrix inequalies in system and control theory. SLAM, Philadelphia (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qu, SC., Wang, YJ. (2005). Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_119

Download citation

  • DOI: https://doi.org/10.1007/11539506_119

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics