Skip to main content

Construction of Fuzzy Models for Dynamic Systems Using Multi-population Cooperative Particle Swarm Optimizer

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

A new fuzzy modeling method using Multi-population Cooperative Particle Swarm Optimizer (MCPSO) for identification and control of nonlinear dynamic systems is presented in this paper. In MCPSO, the population consists of one master swarm and several slave swarms. The slave swarms executeParticle Swarm Optimization (PSO) or its variants independently to maintain the diversity of particles, while the particles in the master swarm enhance themselves based on their own knowledge and also the knowledge of the particles in the slave swarms. The MCPSO is used to automatic design of fuzzy identifier and fuzzy controller for nonlinear dynamic systems. The proposed algorithm (MCPSO) is shown to outperform PSO and some other methods in identifying and controlling dynamic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Narenda, K.S., Parthasarathy, K.: Adaptive identification and control of dynamical systems using neural networks. In: Proc. of the 28th IEEE Conf. on Decision and Control, Tampa, Florida, USA, vol. 2, pp. 1737–1738 (1989)

    Google Scholar 

  2. Narenda, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1, 4–27 (1990)

    Article  Google Scholar 

  3. Sastry, P.S., Santharam, G., Unnikrishnan, K.P.: Memory neural networks for identification and control of dynamical systems. IEEE Trans. Neural Networks 5, 306–319 (1994)

    Article  Google Scholar 

  4. Lee, C.H., Teng, C.C.: Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Trans. Fuzzy Syst. 8, 349–366 (2000)

    Article  Google Scholar 

  5. Juang, C.F.: A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Trans. Fuzzy Syst. 10, 155–170 (2002)

    Article  Google Scholar 

  6. Juang, C.F.: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cyber. B 34, 997–1006 (2004)

    Article  Google Scholar 

  7. Tseng, C.S., Chen, B.S., Uang, H.J.: Fuzzy tracking control design for nonlinear dynamical systems via T-S fuzzy model. IEEE Trans. Fuzzy Syst. 9, 381–392 (2001)

    Article  Google Scholar 

  8. Chow, T.W.S., Yang, F.: A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics. IEEE Trans. Industrial Electronics 45, 151–161 (1998)

    Article  Google Scholar 

  9. Gan, C., Danai, K.: Model-based recurrent neural network for modeling nonlinear dynamic systems. IEEE Trans. Syst., Man, Cyber. 30, 344–351 (2000)

    Article  Google Scholar 

  10. Juang, C.F., Lin, C.T.: A Recurrent self-constructing neural fuzzy inference network. IEEE Trans. neural networks 10, 828–845 (1999)

    Article  Google Scholar 

  11. Wang, L.X., Mendel, J.M.: Back-propagation fuzzy systems as nonlinear dynamic systems identifiers. In: Proc. IEEE Int. Conf. Fuzzy Syst., San Diego, USA, pp. 1409–1418 (1992)

    Google Scholar 

  12. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application. IEEE Trans. Syst., Man, Cyber. 15, 116–132 (1985)

    MATH  Google Scholar 

  13. Tanaka, K., Ikeda, T., Wang, H.O.: A unified approach to controlling chaos via an LMI-based fuzzy control system design. IEEE Trans. Circuits and Systems 45, 1021–1040 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karr, C.L.: Design of an adaptive fuzzy logic controller using a genetic algorithm. In: Proc. of 4th Int. Conf. Genetic Algorithms, San Diego, USA, pp. 450–457 (1991)

    Google Scholar 

  15. Wang, C.H., Hong, T.P., Tseng, S.S.: Integrating fuzzy knowledge by genetic algorithms. IEEE Trans. Evol. Comput. 2, 138–149 (1998)

    Article  Google Scholar 

  16. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier systems for multi dimensional pattern classification problems. IEEE Trans. Syst., Man, Cyber. B 29, 601–618 (1999)

    Article  Google Scholar 

  17. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proc. of Int. Sym. Micro Mach. Hum. Sci., Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  18. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)

    Google Scholar 

  19. Zhang, C., Shao, H., Li, Y.: Particle swarm optimization for evolving artificial network. In: Proc. of IEEE Int. Conf. Syst., Man, Cyber., Nashville, Tennessee, USA, vol. 4, pp. 2487–2490 (2000)

    Google Scholar 

  20. Engelbrecht, A.P., Ismail, A.: Training product unit neural networks. Stability Control: Theory Appl. 2, 59–74 (1999)

    Google Scholar 

  21. Mendes, R., Cortez, P., Rocha, M., Neves, J.: Particle swarms for feedforward neural network training. In: Proc. of Int. Joint Conf. on Neural Networks, Honolulu, USA, pp. 1895–1899 (2002)

    Google Scholar 

  22. Angeline, P.J.: Evolutionary optimization versus particle swarm optimization: philosophy and performance difference. In: Proc. of the 7th Annual Conf. on Evolutionary Programming, San Diego, USA, pp. 601–610 (1998)

    Google Scholar 

  23. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proc. of IEEE Int. Conf. on Evolutionary Computation, Anchorage, USA, pp. 69–73 (1998)

    Google Scholar 

  24. Moriartv, D.: Miikkulainen: Reinforcement learning through symbiotic evolution. Machine learning 22, 11–32 (1996)

    Google Scholar 

  25. Wiegand, R.P.: An analysis of cooperative coevolutionary Algorithms. PhD thesis, George Mason University, Fairfax, Virginia, USA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niu, B., Zhu, Y., He, X. (2005). Construction of Fuzzy Models for Dynamic Systems Using Multi-population Cooperative Particle Swarm Optimizer. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_123

Download citation

  • DOI: https://doi.org/10.1007/11539506_123

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics