Skip to main content

Method to Balance the Communication Among Multi-agents in Real Time Traffic Synchronization

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Abstract

A method to balance the communication among Multi-Agents in real time traffic synchronization is proposed in this research. The paper presents Air Traffic Flow Management (ATFM) problem and its synchronization property. For such a complex problem, combing grid computing with multi-agent coordination techniques to improve ATFM computational efficiency is the main objective of actual research. To demonstrate the developed model – ATFM in Grid Computing (ATFMGC), the grid architecture, the basic components and the relationship among them are described. At the same time, the function of agents (tactical planning agent etc.), their knowledge representation and inference processes are also discussed. As criteria to measure the effective to reduce quantity of the communication among agents and the delay of the flights, Standard of Balancing among Agents (SBA) is used in the analysis. The simulation shows the efficiency of the developed model and successful application in the case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. EUROCONTROL: Future ATFM Measures (FAM) operational Concept, EEC Note No. 13/02 (2002)

    Google Scholar 

  2. Stoltz, S., Ky, P.: Reducing Traffic Bunching More Flexible Air Traffic Flow Management. In: 4th USA/Europe ATM R&D Seminar, New Mexico (2001)

    Google Scholar 

  3. Dippe, D.: 4D-Planner – A Ground Based Planning System for Time Accurate Approach Guidence, DLR- Mitt, 89-93 (1989)

    Google Scholar 

  4. Vôlckers, U.: Approach Towards a Future Integrated Airport Surface Traffic Management, DLR- Mitt, pp. 89–93 (1989)

    Google Scholar 

  5. Gosling, G.D.: Application of Artificial Intelligence Application in Air Traffic Control. Trans. Res. 21A(1) (1987)

    Google Scholar 

  6. Schlatter, U.R.: Real Time Knowledge Based Support for Air Traffic Flow Management. In: IEEE Expert, pp. 21–24 (1994)

    Google Scholar 

  7. Weigang, L., Alves, C.J.P., Omar, N.: An expert system for Air Traffic Flow Management. J. of Advanced Transportation 31(3), 343–361 (1997)

    Article  Google Scholar 

  8. Weigang, L., Dib, M.V.P., Cardoso, D.A.: Grig service agents for real time traffic synchronization. In: The proc. of IEEE International Conference on Web Intelligence, Beijing, pp. 619–623 (2004)

    Google Scholar 

  9. Tidhar, G., Rao, A., Ljunberg, M.: Distributed Air Traffic Management System. Technical note (2) (1992)

    Google Scholar 

  10. Prevôt, T.: Exploring the Many Perspectives of Distributed Air Traffic Management: The Multi Aircraft Control System MACS. In: Chatty, S., Hansman, J., Boy, G. (eds.) The Proc. of the International Conference on Human-Computer Interaction in Aeronautics (HCI Aero), pp. 149–154. AAAI Press, Menlo Park (2002)

    Google Scholar 

  11. Nguyen-Duc, M., Briot, J.-P., Drogoul, A., Duong, V.: An application of Multi-Agent Coordination Techniques in Air Traffic Management. In: The Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology (2003)

    Google Scholar 

  12. Cao, J., Jarvis, S.A., Saini, S., Kerbyson, D.J., Nudd, G.R.: ARMS: an Agent-based Resource Management System for Grid Computing. Scientific Programming 10, 135–148 (2002)

    Google Scholar 

  13. Berman, F., Gox, G., Hey, T.: Grid Computing: Making The Global Infrastructure a Reality. John Wiley & Sons, Chichester (2003)

    Google Scholar 

  14. Ferreira, L., Berstis, V., Armstrong, J., Kendzierski, M., Neukoetter, A., Takagi, M., Bing-Wo, R., Amir, A., Murakawa, R., Hernandez, O., Magowan, J., Bieberstein, N.: Introduction to Grid Computing with Globus. In: IBM (2003)

    Google Scholar 

  15. Portella, G.J., Melo, A.C.M.A.: A Load Balancing Strategy to Schedule Independent Tasks in a Grid Environment. In: Danelutto, M., Vanneschi, M., Laforenza, D. (eds.) Euro-Par 2004. LNCS, vol. 3149. Springer, Heidelberg (2004)

    Google Scholar 

  16. Sotomayor, B.: The Globus Toolkit 3 Programmer’s Tutorial (2003)

    Google Scholar 

  17. Foster, I.: What is the Grid? A Three Point Checklist (2002)

    Google Scholar 

  18. Weiss, G. (ed.): Multiagent systems. MIT Press, Cambridge (2000)

    Google Scholar 

  19. Ltda, P.E.: Guia de Horário de Nacionais e Internacionais (370) (2004)

    Google Scholar 

  20. DEPV, IMA 100-12, portaria DEPV No. 46 de 30/06/99, Departamento de Previsão de Vôo – DEPV, Ministério de Aeronáutica (1999)

    Google Scholar 

  21. Nabrzyski, J., Schopf, J.M., Weglarz, J. (eds.): Grid resource management - State of the Art and Future Trends. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weigang, L., Dib, M.V.P., de Melo, A.C.M. (2005). Method to Balance the Communication Among Multi-agents in Real Time Traffic Synchronization. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_130

Download citation

  • DOI: https://doi.org/10.1007/11539506_130

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics