Skip to main content

A TSK Fuzzy Inference Algorithm for Online Identification

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

This paper proposes an online self-organizing identification algorithm for TSK fuzzy model. The structure of TSK fuzzy model is identified using distance. Parameters of the piecewise linear function consisting consequent part are obtained using recursive version of combined learning method of global and local learning. Both input and output spaces are considered in the proposed algorithm to identify the structure of the TSK fuzzy model. By processing clustering both in input and output space, outliers are excluded in clustering effectively. The proposed algorithm is non-sensitive to noise not by using data itself as cluster centers. The proposed algorithm can obtain a TSK fuzzy model through one pass. By using the proposed combined learning method, the estimated function can have high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Leng, G., Prasad, G., McGinnity, T.M.: An on-line algorithm for creating self-organizing fuzzy neural networks. Neural Networks 17, 1477–1493 (2004)

    Article  MATH  Google Scholar 

  2. Angelov, P.P., Filev, D.P.: An Approach to Online Identification of Takagi-Sugeno Fuzzy Models. IEEE Trans. System, Man, And Cybernetics-part B 34, 484–498 (2004)

    Article  Google Scholar 

  3. Kasabov, N., Song, Q.: DENFIS: Dynamic Evolving Neural-Fuzzy Inference System and Its Application for Time-Series Prediction. IEEE Trans. Fuzzy Systems 10, 144–154 (2004)

    Article  Google Scholar 

  4. Juang, C.-F., Lin, C.-T.: An On-line Self-Constructing Neural Fuzzy Inference Network and Its Applications. IEEE Trans. Fuzzy Systems 6, 12–32 (1998)

    Article  Google Scholar 

  5. Lin, F.-J., Lin, C.-H., Shen, P.-H.: Self-Constructing Fuzzy Neural Network Speed Controller for Permanent-Magnet Synchronous Motor Drive. IEEE Trans. Fuzzy Systems 9, 751–759 (2001)

    Article  Google Scholar 

  6. Yen, J., Wang, L., Gillespie, C.W.: Improving the Interpretability of TSK Fuzzy Models by Combining Global Learning and Local learning. IEEE Trans. Fuzzy Systems 6, 530–537 (1998)

    Article  Google Scholar 

  7. Lin, C.-T.: A neural fuzzy control system with structure and parameter learning. Fuzzy Sets and Systems 70, 183–212 (1995)

    Article  MathSciNet  Google Scholar 

  8. Wu, S., Er, M.J., Gao, Y.: A Fast Approach for Automatic Generation of Fuzzy Fules by Generalized Dynamic Fuzzy Neural Networks. IEEE Trans. Fuzzy Systems 9, 578–594 (2001)

    Article  Google Scholar 

  9. Er, M.J., Wu, S.: A fast learning algorithm for parsimonious fuzzy neural systems. Fuzzy Sets and Systems 126, 337–351 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wu, S., Er, M.J.: Dynamic Fuzzy Neural Networks-A Novel Approach to Function Approximation. IEEE Trans. Systems, Man, and Cybernetics-Part B 30, 358–364 (2000)

    Google Scholar 

  11. Tzafestas, S.G., Zikidis, K.C.: NeuroFAST: On-line Neuro-Fuzzy ART-Based Structure and Parameter Learning TSK Model. IEEE Trans. Systems, Man, and Cybernetics-Part B 31, 797–802 (2001)

    Article  Google Scholar 

  12. Kukolj, D., Levi, E.: Identification of Complex Systems Based on Neural and Takagi-Sugeno Fuzzy Model. IEEE Trans. Systems, Man, and Cybernetics-PART B 34, 272–282 (2004)

    Article  Google Scholar 

  13. Azeem, M.F., Hanmandlu, M., Ahmad, N.: Structure Identification of Generalized Adaptive Neuro-Fuzzy Inference Systems. IEEE Trans. Fuzzy Systems 11, 666–681 (2003)

    Article  Google Scholar 

  14. Liu, P.X., Meng, M.Q.-H.: Online Data-Driven Fuzzy Clustering With Applications to Real-Time Robotic Tracking. IEEE Trans. Fuzzy Systems 12, 516–523 (2004)

    Article  Google Scholar 

  15. Kasabov, N.: Evolving Fuzzy Neural Networks for Supervised/Unsupervised Online Knowledge-Based Learning. IEEE Trans. Systems, Man, and Cybernetics-PART B 31, 902–918 (2001)

    Article  Google Scholar 

  16. Angelov, P.P., Hanby, V.I., Buswell, R.A., Wright, J.A.: Automatic generation of fuzzy rule-based models from data by genetic algorithms. In: John, R., Birkenhead, R. (eds.) Advances in Soft Computing, Germany, pp. 31–40. Springer, Heidelberg (2001)

    Google Scholar 

  17. Angelov, P.P.: Evolving Rule-Based Models: A Tool for Design of Flexible Adaptive Systems. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  18. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Systems, Man, and Cybernetics 15, 116–132 (1985)

    MATH  Google Scholar 

  19. Wang, L.X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Englewood Cliffs (1997)

    MATH  Google Scholar 

  20. Yamakawa, T., Matsumoto, G. (eds.): Methodologies for the Conception, Design, and Applications of Soft Computing, pp. 271–274. World Scientific, Singapore (1998)

    Google Scholar 

  21. Kim, K., Kim, Y.-K., Kim, E., Park, M.: A New Fuzzy Modeling Approach. Proc. of FUZZ-IEEE 2004, 773–776 (2004)

    Google Scholar 

  22. Kim, E., Park, M., Ji, S., Park, M.: A new approach to fuzzy modeling. IEEE Trans. Fuzzy Systems 5, 328–337 (1997)

    Article  Google Scholar 

  23. Kim, K., Kyung, K.M., Park, C.-W., Kim, E., Park, M.: Robust TSK Fuzzy Modeling Approach Using Noise Clustering Concept for Function Approximation. In: Zhang, J., He, J.-H., Fu, Y. (eds.) CIS 2004. LNCS, vol. 3314, pp. 538–543. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  24. Isermann, R., Lachmann, K.-H., Matko, D.: Adaptive Control Systems. Prentice-Hall, Englewood Cliffs (1992)

    MATH  Google Scholar 

  25. Ljung, L.: System Identification: Theory for the user. Prentice-Hall, Englewood Cliffs (1998)

    Google Scholar 

  26. Goodwin, G.C., Sin, K.S.: Adaptive Filtering Prediction and Control. Prentice-Hall, Englewood Cliffs (1984)

    MATH  Google Scholar 

  27. Haykin, S.: Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs (1996)

    Google Scholar 

  28. Wai, R.-J., Chen, P.-C.: Intelligent Tracking Control for Robot Manipulator Including Actuator Dynamics via TSK-Type Fuzzy Neural Network. IEEE Trans. Fuzzy Systems 12, 552–559 (2004)

    Article  Google Scholar 

  29. Kiguchi, K., Tanaka, T., Fukuda, T.: Neuro-Fuzzy Control of a Robotic Exoskeleton With EMG Signals. IEEE Trans. Fuzzy Systems 12, 481–490 (2004)

    Article  Google Scholar 

  30. Wang, L., Frayman, Y.: A dynamically generated fuzzy neural network and its application to torsional vibration control of tandem cold rolling mill spindles. Engineering Appl. Artificial Intelligence 15, 541–550 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, K., Whang, E.J., Park, CW., Kim, E., Park, M. (2005). A TSK Fuzzy Inference Algorithm for Online Identification. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_23

Download citation

  • DOI: https://doi.org/10.1007/11539506_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics