Skip to main content

Geometrical Probability Covering Algorithm

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

In this paper, we propose a novel classification algorithm, called geometrical probability covering (GPC) algorithm, to improve classification ability. On the basis of geometrical properties of data, the proposed algorithm first forms extended prototypes through computing means of any two prototypes in the same class. Then Gaussian kernel is employed for covering the geometrical structure of data and used as a local probability measurement. By computing the sum of the probabilities that a new sample to be classified to the set of prototypes and extended prototypes, the classified criterion based on the global probability measurement is achieved. The proposed GPC algorithm is simple but powerful, especially, when training samples are sparse and small size. Experiments on several databases show that the proposed algorithm is promising. Also, we explore other potential applications such as outlier removal with the proposed GPC algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  2. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on Infomation Theory 13, 21–27 (1968)

    Article  Google Scholar 

  3. Dasarathy, B.V. (ed.): Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society, Washington (1991)

    Google Scholar 

  4. Li, S.Z., Chan, K.L., Wang, C.L.: Performance Evaluation of the Nearest Feature Line Method in Image Classification and Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1335–1339 (2000)

    Article  Google Scholar 

  5. Fraley, C., Raftery, A.E.: Model-based Clustering, Discriminant Analysis, and Density Estimation. Technical Report No. 380, University of Washington (2000)

    Google Scholar 

  6. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  7. Samaria, F.S.: Face Recognition Using Hidden Markov Models. PhD thesis, University of Cambridge (1994)

    Google Scholar 

  8. Graham, D.B., Allinson, N.M.: Characterizing virtual Eigensignatures for General Purpose Face Recognition. In: Wechsler, H., Phillips, P.J., Bruce, V.F., Fogelman-Soulie, V., Huang, T.S. (eds.) Face Recognition: From Theory to Applications. NATO ASI Series F, Computer and Systems Sciences, vol. 163, pp. 446–456 (1998)

    Google Scholar 

  9. Michael, J.L., Budynek, J., Akamatsu, S.: Automatic classification of Single Facial Images. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(12), 1357–1362 (1999)

    Article  Google Scholar 

  10. Murphy, P.M., Aha, D.W.: UCI Repository of machine learning databases. Department of Information and Computer Science. University of California, Irvine (1994), http://www.ics.uci.edu/~mlearn/MLRepository.html

    Google Scholar 

  11. Daniel, L.S., Weng, J.: Using Discriminant Eigenfeatures for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligences 18(8), 831–836 (1996)

    Article  Google Scholar 

  12. Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  13. Roweis, S.T., Lawrance, K.S.: Nonlinear Dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  14. Zhang, J., Shen, H., Zhou, Z.-H.: Unified Locally Linear Embedding and Linear Discriminant Analysis Algorithm (ULLELDA) for Face Recognition. In: Li, S.Z., Lai, J., Tan, T., Feng, G., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 209–307. Springer, Heidelberg (2004)

    Google Scholar 

  15. Zhang, J., Li, S.Z., Wang, J.: Nearest Manifold Approach for Face Recognition. In: The 6th IEEE International Conference on Automatic Face and Gesture Recogntion, Seoul, Korea (May 2004)

    Google Scholar 

  16. Zhang, J., Li, S.Z., Wang, J.: Manifold Learning and Applications in Recognition. In: Tan, Y.P., Yap, K.H., Wang, L. (eds.) Intelligent Multimedia Processing with Soft Computing, Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Li, S.Z., Wang, J. (2005). Geometrical Probability Covering Algorithm. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_29

Download citation

  • DOI: https://doi.org/10.1007/11539506_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics