Skip to main content

Vagueness and Extensionality

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

  • 1518 Accesses

Abstract

We introduce a property of set to represent vagueness without using truth value. It has gotten less attention in fuzzy set theory. We introduce it by analyzing a well-known philosophical argument by Gearth Evans. To interpret ‘a is a vague object’ as ‘the Axiom of Extensionality is violated for a’ allows us to represent a vague object in Evans’s sense, even within classical logic, and of course within fuzzy logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akiba, K.: Vagueness as a modality. The Philosophical Quarterly 50, 359–370 (2000)

    Article  MathSciNet  Google Scholar 

  2. Copeland, B.J.: On Vague Objects, Fuzzy Logic and Fractal Boundaries. Southern journal of philosophy 33, 83–95 (1995)

    Article  Google Scholar 

  3. Keefe, R., Smith, P. (eds.): Vagueness: a reader, vol. 317. MIT press, Cambridge (1978)

    Google Scholar 

  4. Friedman, H.: The consistency of classical set theory relative to a set theory with intuitionistic logic. Journal of Symbolic Logic 38, 315–319 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hajek, P., Hanikova, Z.: A development of set theory in fuzzy logic. In: Theory and applications of multiple-valued logic, pp. 273–285. Physica, Heidelberg (2003)

    Google Scholar 

  6. Keefe, R., Smith, P.: Introduction: theories of vagueness. In: Keefe, R., Smith, P. (eds.) Vagueness: a reader, pp. 1–57. MIT press, Cambridge (1997)

    Google Scholar 

  7. Noonan, H.W.: Are there vague objects? Analysis 64, 131–134 (2004)

    Article  Google Scholar 

  8. Titani, S., Takeuti, G.: Fuzzy logic and fuzzy set theory, Arch. Math Logic 32, 1–32 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Tye, M.: Sorites paradoxes and the semantics of vagueness. Reprinted in Vagueness: a reader, 281-293 (1994)

    Google Scholar 

  10. Yatabe, S., Inaoka, H.: On Evans’s vague object from set theoretic viewpoint (preprint)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yatabe, S., Inaoka, H. (2005). Vagueness and Extensionality. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_33

Download citation

  • DOI: https://doi.org/10.1007/11539506_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics