Skip to main content

A Linguistic Truth-Valued Uncertainty Reasoning Model Based on Lattice-Valued Logic

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

The subject of this work is to establish a mathematical framework that provide the basis and tool for uncertainty reasoning based on linguistic information. This paper focuses on a flexible and realistic approach, i.e., the use of linguistic terms, specially, the symbolic approach acts by direct computation on linguistic terms. An algebra model with linguistic terms, which is based on a logical algebraic structure, i.e., lattice implication algebra, is applied to represent imprecise information and deals with both comparable and incomparable linguistic terms (i.e., non-ordered linguistic terms). Within this framework, some inferential rules are analyzed and extended to deal with these kinds of lattice-valued linguistic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, New York (1967)

    MATH  Google Scholar 

  2. Goguen, J.A.: The logic of inexact concepts. Synthese 19, 325–373 (1968)

    Article  Google Scholar 

  3. Ho, N.C., Wechler, W.: Hedge algebras: an algebraic approach to structure of sets of linguistic truth values. Fuzzy Sets and Systems 35, 281–293 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ho, N.C., Wechler, W.: Extended hedge algebras and their application to fuzzy logic. Fuzzy Sets and Systems 52, 259–281 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lee, T.T., Xu, Y.: “The consistencey of rule-bases in lattice-valued first-order logic LF(X),”. In: Proc. of 2003 IEEE Internatinal Conference on SMC, pp. 4968–4973 (2003)

    Google Scholar 

  6. Novak, V.: First-order fuzzy logic. Studia Logica 46, 87–109 (1982)

    Article  Google Scholar 

  7. Pavelka, J.: On fuzzy logic I: Many-valued rules of inference, II: Enriched residuated lattices and semantics of propositional calculi, III: Semantical completeness of some many-valued propositional calculi. Zeitschr. F. Math. Logik und Grundlagend. Math. 25, 119-134, 447-464 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pei, Z., Xu, Y.: Lattice implication algebra model of a kind of linguistic terms and its inference. In: Proc. of the 6th International FLINS Conference, pp. 93–98 (2004)

    Google Scholar 

  9. Turksen, I.B., Kandel, A., Zhang, Y.Q.: Universal truth tables and normal forms. IEEE Trans. Fuzzy Syst. 6, 295–303 (1998)

    Article  Google Scholar 

  10. Turksen, I.B.: Computing with descriptive and verisic words. In: Proc. NAFIP 1999, pp. 13–17 (1999)

    Google Scholar 

  11. Xu, Y.: Lattice implication algebras. J. Southwest Jiaotong Univ. 89, 20–27 (1993)

    Google Scholar 

  12. Xu, Y., Qin, K.Y., Liu, J., Song, Z.M.: L-valued propositional logic LVP. Inform. Sci. 114, 205–235 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Xu, Y., Ruan, D., Liu, J.: Approximate reasoning based on lattice-valued propositional logic L vpl . In: Ruan, D., Kerre, E.E. (eds.) Fuzzy Sets Theory and Applications, pp. 81–105. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  14. Xu, Y., Liu, J., Song, Z.M., Qin, K.Y.: On sematics of L-valued first-order logic LVF. Int. J. Gen. Syst. 29, 53–79 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Xu, Y., Song, Z.M., Qin, K.Y., Liu, J.: Syntax of L-valued first-order logic LVF. Int. J. Mutiple-Valued Logic 7, 213–257 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Xu, Y., Ruan, D., Qin, K.Y., Liu, J.: Lattice-Valued Logic. Springer, Berlin (2003)

    MATH  Google Scholar 

  17. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, S., Xu, Y., Ma, J. (2005). A Linguistic Truth-Valued Uncertainty Reasoning Model Based on Lattice-Valued Logic. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_35

Download citation

  • DOI: https://doi.org/10.1007/11539506_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics