Skip to main content

Random Fuzzy Age-Dependent Replacement Policy

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

  • 1154 Accesses

Abstract

This paper discusses the age-dependent replacement policy, in which the interarrival lifetimes of components are characterized as random fuzzy variables. A random fuzzy expected value model is presented and shown how it can be applied to reduce the loss of system failures. To solve the proposed model, a simultaneous perturbation stochastic approximation (SPSA) algorithm based on random fuzzy simulation is developed to search the optimal solution. At the end of this paper, a numerical example is enumerated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asmussen, S.: Applied Probability and Queues. Wiley, New York (1987)

    MATH  Google Scholar 

  2. Huang, S.: A genetic-evolved fuzzy system for maintenance scheduling of generating units. Electrical Power Energy Systems 20, 191–195 (1998)

    Article  Google Scholar 

  3. Huang, C., Lin, C.: Fuzzy approach for generator maintenance scheduling. Electric Power System Research 24, 31–38 (1992)

    Article  Google Scholar 

  4. Liu, Y., Liu, B.: Expected value operator of random fuzzy variable and random fuzzy expected value models. International Journal of Uncertainty Fuzziness & Knowledge-Based Systems 11, 195–215 (2003)

    Article  MATH  Google Scholar 

  5. Liu, B.: Uncertainty Theory: An Introduction to its Axiomatic Foundations. Springer, Berlin (2004)

    MATH  Google Scholar 

  6. Liu, B.: Theory and Practice of Uncertain Programming. Phisica, Heidelberg (2002)

    MATH  Google Scholar 

  7. Nahmias, S.: Fuzzy variables. Fuzzy Sets and Systems 1, 97–110 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Spall, J.: An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins Apl Technical Digest 19, 482–492 (1998)

    Google Scholar 

  9. Suresh, P., Chaudhuri, D.: Fuzzy-set approach to select maintenance strategies for multistate equipment. IEEE Transactions on Reliability 43, 431–456 (1994)

    Article  Google Scholar 

  10. Zhao, R., Tang, W.: Random fuzzy renewal process. European Journal of Operational Research (to be published)

    Google Scholar 

  11. Zhao, R., Tang, W.: Random fuzzy renewal reward process (to be published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, S., Zhang, J., Zhao, R. (2005). Random Fuzzy Age-Dependent Replacement Policy. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_42

Download citation

  • DOI: https://doi.org/10.1007/11539506_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics