Skip to main content

A Theorem for Fuzzy Random Alternating Renewal Processes

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

  • 1148 Accesses

Abstract

In this paper, a new kind of alternating renewal processes—fuzzy random alternating renewal processes—is devoted. A theorem on the limit value of the mean chance of the fuzzy random event “system is on at time t” is presented. The two degenerate cases of the theorem, stochastic and fuzzy cases, are also analyzed. The importance of the results lies in the fact that the relation between classical alternating renewal processes and fuzzy random alternating renewal processes is established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asmussen, S.: Applied Probability and Queues. Wiley, Now York (1987)

    MATH  Google Scholar 

  2. Birolini, A.: Quality and Reliability of Technical Systems. Spring, Berlin (1994)

    MATH  Google Scholar 

  3. Daley, D., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer, Berlin (1988)

    MATH  Google Scholar 

  4. Dozzi, M., Merzbach, E., Schmidt, V.: Limit theorems for sums of random fuzzy sets. Journal of Mathematical Analysis and Applications 259, 554–565 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hwang, C.: A theorem of renewal process for fuzzy random variables and its application. Fuzzy Sets and Systems 116, 237–244 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kwakernaak, H.: Fuzzy random variables—I. Information Sciences 15, 1–29 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kwakernaak, H.: Fuzzy random variables—II. Information Sciences 17, 253–278 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kruse, R., Meyer, K.: Statistics with Vague Data. D. Reidel Publishing Company, Dordrecht (1987)

    MATH  Google Scholar 

  9. Liu, B.: Theory and Practice of Uncertain Programming. Physica, Heidelberg (2002)

    MATH  Google Scholar 

  10. Liu, B.: Fuzzy random chance-constrained programming. IEEE Transactions on Fuzzy Systems 9, 713–720 (2001)

    Article  Google Scholar 

  11. Liu, B.: Fuzzy random dependent-chance programming. IEEE Transactions on Fuzzy Systems 9, 721–726 (2001)

    Article  Google Scholar 

  12. Liu, B., Liu, Y.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems 10, 445–450 (2002)

    Article  Google Scholar 

  13. Liu, P.: Fuzzy-valued Markov processes and their properties. Fuzzy Sets and Systems 91, 45–52 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liu, Y., Liu, B.: Fuzzy random variables: a scalar expected value. Fuzzy Optimization and Decision Making 2, 143–160 (2003)

    Article  MathSciNet  Google Scholar 

  15. Liu, Y., Liu, B.: Expected value operator of random fuzzy variable and random fuzzy expected value models. International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems 11, 195–215 (2003)

    Article  MATH  Google Scholar 

  16. Liu, Y., Liu, B.: On minimum-risk problems in fuzzy random decision systems. Computers & Operations Research 32, 257–283 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Popova, E., Wu, H.: Renewal reward processes with fuzzy rewards and their applications to T-age replacement policies. European Journal of Operational Research 117, 606–617 (1999)

    Article  MATH  Google Scholar 

  18. Puri, M., Ralescu, D.: The concept of normality for fuzzy random variables. Annals of Probability 13, 1371–1379 (1985)

    Article  MathSciNet  Google Scholar 

  19. Puri, M., Ralescu, D.: Fuzzy random variables. Journal of Mathematical Analysis and Applications 114, 409–422 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ross, S.: Stochastic Processes. John Wiley & Sons, Inc., New York (1996)

    MATH  Google Scholar 

  21. Tijms, H.: Stochastic Modelling and Analysis: A Computational Approach. Wiley, New York (1994)

    Google Scholar 

  22. Zhao, R., Liu, B.: Renewal process with fuzzy interarrival times and rewards. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 11, 573–586 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, R., Tang, W., Li, G. (2005). A Theorem for Fuzzy Random Alternating Renewal Processes. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_43

Download citation

  • DOI: https://doi.org/10.1007/11539506_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics