Skip to main content

Design of T–S Fuzzy Classifier via Linear Matrix Inequality Approach

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

  • 1147 Accesses

Abstract

A linear matrix inequality approach to designing accurate classifier with a compact T–S(Takagi–Sugeno) fuzzy-rule is proposed, in which all the elements of the T–S fuzzy classifier design problem have been moved in parameters of a LMI optimization problem. Two-step procedure is used to effectively design the T–S fuzzy classifier with many tuning parameters: antecedent part and consequent part design. Then two LMI optimization problems are formulated in both parts and solved efficiently by using interior-point method. Iris data is used to evaluate the performance of the proposed approach. From the simulation results, the proposed approach showed superior performance over other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chen, M., Kundu, A., Zhou, J.: Off-line handwritten word recognition using a hidden Markov model type stochastic network. IEEE Trans. Pattern Anal. Mach. Intel. 16, 481–496 (1994)

    Article  Google Scholar 

  2. Cohen, E.: Computational theory for interpreting handwritten text in constrained domains. Artif. Intell. 67, 1–31 (1994)

    Article  Google Scholar 

  3. Partizeau, M., Plamondon, R.: A fuzzy-syntactic approach to allograph modeling for cursive script recognition. IEEE Trans. Pattern Anal. Mach. Intel. 17, 702–712 (1995)

    Article  Google Scholar 

  4. Bourlard, H., Morgan, N.: Connectionist Speech Recognition-A Hybrid Approach. Kluwer Academic, Boston (1994)

    Google Scholar 

  5. Lam, K.M., Yan, H.: Locating and extracting the eye in human face images. Pattern Recog. 29, 771–779 (1996)

    Article  Google Scholar 

  6. Schalkoff, R.: Pattern Recognition-Statistical, Structural and Neural Approaches. Wiley, New York (1992)

    Google Scholar 

  7. Jang, J.S.R.: Fuzzy controller design without domain experts. In: Proc. IEEE Int. Conf. Fuzzy Systems, San Diego, CA, March 1992, pp. 289–296 (1992)

    Google Scholar 

  8. Kumar, K., Narayanaswamy, S., Garg, S.: Solving large parameter optimization problems using a genetic algorithm with stochastic coding. In: Winter, G., Periaux, J., Galan, M., Cuesta, P. (eds.) Genetic Algorithms in Engineering and Computer Science, Wiley, New York (1995)

    Google Scholar 

  9. Ishibuchi, H., Murata, T., Turksen, I.B.: Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst. 89, 135–150 (1997)

    Article  Google Scholar 

  10. Wang, C.: Integrating fuzzy knowledge by genetic algorithms. Fuzzy Sets Syst. 2, 138–149 (1998)

    Google Scholar 

  11. Ishibuchi, H., Nakashima, N., Murata, T.: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans. Syst., Man, Cybern. B 29, 601–618 (1999)

    Article  Google Scholar 

  12. Hall, L.O., Ozyurt, I.B., Bezdek, J.C.: Clustering with genetically optimized approach. IEEE Trans. Evolut. Computing, 103–112 (1999)

    Google Scholar 

  13. Hwang, H.: Control strategy for optimal compromise between trip time and energy consumption in a high-speed railway. IEEE Trans. Syst., Man, Cybern. A. 28, 791–802 (1998)

    Article  Google Scholar 

  14. Jagielska, I., Matthews, C., Whitfort, T.: An investigation into the application of neural networks, fuzzy logic, genetic algorithms, and rough sets to automated knowledge acquisition for classification problems. Neurocomputing 24, 37–54 (1999)

    Article  MATH  Google Scholar 

  15. Russo, M.: FuGeNeSys.A fuzzy genetic neural system for fuzzy modeling. IEEE Trans. Fuzzy Syst. 6, 373–388 (1998)

    Article  Google Scholar 

  16. Wang, L., Yen, J.: Extracting fuzzy rules for system modeling using a hybrid of genetic algorithms and Kalman filter. Fuzzy Sets Syst. 101, 353–362 (1999)

    Article  MathSciNet  Google Scholar 

  17. Setnes, M., Roubos, H.: GA-fuzzy modeling and classification: complexity and performance. IEEE Trans. Fuzzy Syst. 8, 509–522 (2000)

    Article  Google Scholar 

  18. Wang, J.S., Lee, G.C.S.: Self-adaptive neuro-fuzzy inference system for classification application. IEEE Trans. Fuzzy Syst. 10, 790–802 (2002)

    Article  Google Scholar 

  19. Abonyi, J., Roubos, J.A., Szeifert, F.: Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision- tree initialization. Int. J. Approx. Reason. 32, 1–21 (2003)

    Article  MATH  Google Scholar 

  20. Abe, S., Thawonmas, R.: A fuzzy classifier with ellipsoidal regions. IEEE Trans. Fuzzy Syst. 5, 358–368 (1997)

    Article  Google Scholar 

  21. Shi, Y., Eberhart, R., Chen, Y.: Implementation of evolutionary fuzzy system. IEEE Trans. Fuzzy Syst. 7, 109–119 (1999)

    Article  Google Scholar 

  22. Russo, M.: Genetic fuzzy learning. IEEE Trans. Evolut. Computat. 4, 259–273 (2000)

    Article  Google Scholar 

  23. Ishibuchi, H., Nakashima, T., Murata, T.: Three-objective geneticbased machine learning for linguistic rule extraction. Inf. Sci. 136, 109–133 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, M.H., Park, J.B., Joo, Y.H., Lee, H.J. (2005). Design of T–S Fuzzy Classifier via Linear Matrix Inequality Approach. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_53

Download citation

  • DOI: https://doi.org/10.1007/11539506_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics