Skip to main content

Design of Fuzzy Rule-Based Classifier: Pruning and Learning

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

This paper presents new pruning and learning methods for the fuzzy rule-based classifier. For the simplicity of the model structure, the unnecessary features for each fuzzy rule are eliminated through the iterative pruning algorithm. The quality of the feature is measured by the proposed correctness method, which is defined as the ratio of the fuzzy values for a set of the feature values on the decision region to one for all feature values. For the improvement of the classification performance, the parameters of the proposed classifier are adjusted by using the gradient descent method so that the misclassified feature vectors are correctly re-categorized. Finally, the fuzzy rule-based classifier is tested on two data sets and is found to demonstrate an excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Joo, Y.H., Hwang, H.S., Kim, K.B., Woo, K.B.: Linguistic model identification for fuzzy system. Electron. Letter 31, 330–331 (1995)

    Article  Google Scholar 

  2. Joo, Y.H., Hwang, H.S., Kim, K.B., Woo, K.B.: Fuzzy system modeling by fuzzy partition and GA hybrid schemes. Fuzzy Set and Syst. 86, 279–288 (1997)

    Article  Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. A wiley-interscience publishing company, inc., Hoboken (2001)

    MATH  Google Scholar 

  4. Wu, T.P., Chen, S.M.: A new method for constructing membership functions and fuzzy rules from training examples. IEEE Trans. Syst., Man, Cybern. B. 29, 25–40 (1999)

    Article  Google Scholar 

  5. Roubos, H., Setnes, M.: Compact transparent fuzzy models and classifiers through iterative complexity reduction. IEEE Trans. Fuzzy Systems 9, 516–524 (2001)

    Article  Google Scholar 

  6. Setnes, M., Roubos, H.: GA-fuzzy modeling and classification: complexity and performance. IEEE Trans. Fuzzy Systems 8, 509–522 (2000)

    Article  Google Scholar 

  7. Pal, N.R., Chakraborty, S.: Fuzzy rule extraction from ID3-type decision trees for real data. IEEE Trans. Syst., Man, Cybern. B. 31, 745–754 (2001)

    Article  Google Scholar 

  8. Paul, S., Kumar, S.: Subsethood based adaptive linguistic networks for pattern classification. IEEE Trans. Syst., Man, Cybern. C. 33, 248–258 (2003)

    Article  Google Scholar 

  9. Ishibuchi, H., Murata, T., Turksen, I.B.: Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Sets Syst. 89, 135–149 (1997)

    Article  Google Scholar 

  10. Abe, S., Thawonmas, R.: A fuzzy classifier with ellipsoidal regions. IEEE Trans. Fuzzy Systems 5, 358–368 (1997)

    Article  Google Scholar 

  11. Thawonmas, R., Abe, S.: A novel approach to feature selection based on analysis of class regions. IEEE Trans. Syst., Man, Cybern. B. 27, 196–207 (1997)

    Article  Google Scholar 

  12. Shi, Y., Eberhart, R., Chen, Y.: Implementation of evolutionary fuzzy systems. IEEE Trans. Fuzzy Systems 7, 109–119 (1999)

    Article  Google Scholar 

  13. Li, R., Mukaidono, M., Turksen, I.B.: A fuzzy neural network for pattern classification and feature selection. Fuzzy Sets Syst. 130, 101–108 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Hong, T.P.: Processing individual fuzzy attributes for fuzzy rule induction. Fuzzy Sets Syst. 112, 127–140 (2000)

    Article  Google Scholar 

  15. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics. 7, 179–188 (1936)

    Google Scholar 

  16. Merz, C.J., Murphy, P.M.: UCI repository of machine learning databases., Irvine, Dept. of Information and Computer Science, Univ. of California, Irvine (1996), http://www.ics.uci.edu/~mlearn/MLRepository.html

  17. Castellano, G., Fanelli, A.M., Mencar, C.: An empirical risk functional to improve learning in a neuro-fuzzy Classifier. IEEE Trans. Syst., Man, Cybern. B. 34, 725–731 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, D.W., Park, J.B., Joo, Y.H. (2005). Design of Fuzzy Rule-Based Classifier: Pruning and Learning. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_54

Download citation

  • DOI: https://doi.org/10.1007/11539506_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics