Skip to main content

The Fuzzy Mega-cluster: Robustifying FCM by Scaling Down Memberships

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

A new robust clustering scheme based on fuzzy c-means is proposed and the concept of a fuzzy mega-cluster is introduced in this paper. The fuzzy mega-cluster is conceptually similar to the noise cluster, designed to group outliers in a separate cluster. This proposed scheme, called the mega-clustering algorithm is shown to be robust against outliers. Another interesting property is its ability to distinguish between true outliers and non-outliers (vectors that are neither part of any particular cluster nor can be considered true noise). Robustness is achieved by scaling down the fuzzy memberships, as generated by FCM so that the infamous unity constraint of FCM is relaxed with the intensity of scaling differing across datum. The mega-clustering algorithm is tested on noisy data sets from literature and the results presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    MATH  Google Scholar 

  2. Krishnapuram, R., Keller, J.M.: A Possibilistic Approach to Clustering. IEEE Trans. Fuzzy Syst. 1, 98–110 (1993)

    Article  Google Scholar 

  3. Davé, R.N.: Characterization and Detection of Noise in Clustering. Pattern Recog. Letters. 12, 657–664 (1991)

    Article  Google Scholar 

  4. Davé, R.N., Sen, S.: On Generalizing the Noise Clustering Algorithms. In: 7th IFSA World Congress, Prague, pp. 205–210 (1997) (invited paper)

    Google Scholar 

  5. Davé, R.N., Sen, S.: Noise Clustering Algorithm Revisited. In: Proc. Biennial Workshop NAFIPS, Syracuse, pp. 199–204 (1997)

    Google Scholar 

  6. Beni, G., Liu, X.: A Least Biased Fuzzy Clustering Method. IEEE Trans. Pattern Anal. Mach. Intell. 16, 954–960 (1994)

    Article  Google Scholar 

  7. Pal, N.R., Pal, K., Bezdek, J.C.: A Mixed c-Means Clustering Model. In: Proc. 6th IEEE Conf. Fuzzy Syst., pp. 11–21 (1997)

    Google Scholar 

  8. Chintalapudi, K.K., Kam, M.: A Noise-Resistant Fuzzy c-Means Algorithm for Clustering. In: Proc. 7th IEEE Conf. Fuzzy Syst., pp. 1458–1463 (1998)

    Google Scholar 

  9. Keller, A.: Fuzzy Clustering with Outliers. In: Proc. 19th International Conference of NAFIPS, The North American Fuzzy Information Processing Society, pp. 143–147 (2000)

    Google Scholar 

  10. Kersten, P.R.: Fuzzy Order Statistics and their Application to Fuzzy Clustering. IEEE Trans. Fuzzy Syst. 7, 708–712 (1999)

    Article  Google Scholar 

  11. Kim, J., Krishnapuram, R., Davé, R.N.: Application of the Least Trimmed Squares Technique to Prototype-based Clustering. Pattern Recog. Letters 17, 633–641 (1996)

    Article  Google Scholar 

  12. Davé, R.N., Krishnapuram, R.: Robust Clustering Methods: A Unified View. IEEE Trans. Fuzzy Syst. 5, 270–293 (1997)

    Article  Google Scholar 

  13. Krishnapuram, R., Keller, J.M.: The Possibilistic c-Means Algorithm: Insights and Recommendations. IEEE Trans. Fuzzy Syst. 4, 385–393 (1996)

    Article  Google Scholar 

  14. Wie, L.M., Xie, W.X.: Rival Checked Fuzzy c-Means Algorithm. Acta Electronica Sinica 28, 63–66 (2000)

    Google Scholar 

  15. Fan, J.L., Zhen, W.Z., Xie, W.X.: Supressed Fuzzy c-Means Clustering Algorithms. Pattern Recog. Letters 24, 1607–1612 (2003)

    Article  MATH  Google Scholar 

  16. Banerjee, A., Davé, R.N.: The Feasible Solution Algorithm for Fuzzy Least Trimmed Squares Clustering. In: Proc. 23rd International Conference of NAFIPS, The North American Fuzzy Information Processing Society, pp. 222–227 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Banerjee, A., Davé, R.N. (2005). The Fuzzy Mega-cluster: Robustifying FCM by Scaling Down Memberships. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_57

Download citation

  • DOI: https://doi.org/10.1007/11539506_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics