Abstract
We present a method for extracting arbitrarily shaped clusters buried in uniform noise data. The popular k-means algorithm is firstly fuzzified with addition of entropic terms to the objective function of data partitioning problem. This fuzzy clustering is then kernelized for adapting to the arbitrary shape of clusters. Finally, the Euclidean distance in this kernelized fuzzy clustering is modified to a robust one for avoiding the influence of noisy background data. This robust kernel fuzzy clustering method is shown to outperform every its predecessor: fuzzified k-means, robust fuzzified k-means and kernel fuzzified k-means algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Trans. Neural Netw. 13, 780–784 (2002)
Kim, D.-W., Lee, K., Lee, D., Lee, K.H.: Evaluation of the performance of clustering algorithms in kernel-based feature space. Patt. Recog. 38, 607–611 (2004)
Wu, K.-L., Yang, M.-S.: Alternative c-means clustering algorithms. Patt. Recog. 35, 2267–2278 (2002)
Leski, J.: Towards a robust fuzzy clustering. Fuzzy Sets & Syst. 137, 215–233 (2003)
Urahama, K.: Convergence of alternative c-means clustering algorithms. IEICE Trans. Inf. & Syst. E86-D, 752–754 (2003)
Zhang, D.-Q., Chen, S.-C.: Kernel-based fuzzy and possibilistic c-means clustering. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 122–125. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Du, W., Inoue, K., Urahama, K. (2005). Robust Kernel Fuzzy Clustering. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_58
Download citation
DOI: https://doi.org/10.1007/11539506_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28312-6
Online ISBN: 978-3-540-31830-9
eBook Packages: Computer ScienceComputer Science (R0)