Skip to main content

Entropy and Subsethood for General Interval-Valued Intuitionistic Fuzzy Sets

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

In this paper, we mainly extend entropy and subsethood from intuitionistic fuzzy sets to general interval-valued intuitionistic fuzzy sets, propose a definition of entropy and subsethood , offer a function of entropy and construct a class of subsethood function. Then from discussing the relationship between entropy and subsethood, we know that while choosing the subsethood, we can get some kinds of function of entropy based on subsethood. Our work is also applicable to practical fields such as: neural networks, expert systems, and other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inform.and Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  2. Zadeh, L.A.: Fuzzy sets and Systems. In: Proc. Systems Theory, New York. Polytechnic Institute of Brooklyn, pp. 29–67 (1965)

    Google Scholar 

  3. Atanassov, K.T.: Intuitionistic Fuzzy Sets. In: Sgurev, V. (ed.) VII ITKR’s session, Sofia, Central Sci.and Techn.Library, June 1983. Bulgaria Academy of Sciences (1984)

    Google Scholar 

  4. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–97 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 31, 343–349 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica, Heidelberg (1999)

    MATH  Google Scholar 

  7. Jaynes, E.T.: Where do We Stand on Maximum Entropy? In: Levine, Tribus (eds.) The Maximum Entropy Formalism, MIT Press, Cambridge

    Google Scholar 

  8. Szmidt, E., Kacprzyk, J.: Entropy for Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 118, 467–477 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu, Y.-h., Xiong, F.-l.: Subsethood on Intuitionistic Fuzzy Sets. In: International Conference on Machine Learning and Cybernetics V.3, pp. 1336–1339 (2002)

    Google Scholar 

  10. Deschrijver, G., Kerre, E.E.: On her Relationship between some Extensions of Fuzzy Set Theory. Fuzzy Sets and Systems 133, 277–285 (2003)

    Article  MathSciNet  Google Scholar 

  11. Wang, G.-j., He, Y.-m.: Intuitionistic Sets and Fuzzy Sets. Fuzzy Sets and Systems 110, 271–274 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Luca, A.E., Termini, S.: A Definition of a Non-probabilistic Entropy in the Setting of Fuzzy Sets Theory. Inform. and Control 20, 301–312 (1972)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Xd., Zheng, Sh., Xiong, Fl. (2005). Entropy and Subsethood for General Interval-Valued Intuitionistic Fuzzy Sets. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_6

Download citation

  • DOI: https://doi.org/10.1007/11539506_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics