Skip to main content

Classification of MPEG VBR Video Data Using Gradient-Based FCM with Divergence Measure

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

  • 1119 Accesses

Abstract

An efficient approximation of the Gaussian Probability Density Function (GPDF) is proposed in this paper. The proposed algorithm, called the Gradient-Based FCM with Divergence Measure (GBFCM (DM)), employs the divergence measurement as its distance measure and utilizes the spatial characteristics of MPEG VBR video data for MPEG data classification problems. When compared with conventional clustering and classification algorithms such as the FCM and GBFCM, the proposed GBFCM(DM) successfully finds clusters and classifies the MPEG VBR data modelled by the 12-dimensional GPDFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pacifici, G., Karlsson, G., Garrett, M., Ohta, N.: Guest editorial real-time video services in multimedia networks, IEEE J. Select. Areas Commun. 15, 961–964 (1997)

    Article  Google Scholar 

  2. Tsang, D., Bensaou, B., Lam, S.: Fuzzy-based rate control for real-time MPEG video. IEEE Trans. Fuzzy Syst. 6, 504–516 (1998)

    Article  Google Scholar 

  3. Tan, Y.P., Yap, K.H., Wang, L. (eds.): Intelligent Multimedia Processing with Soft Computing, 168th edn. Series: Studies in Fuzziness and Soft Computing. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  4. Dimitrova, N., Golshani, F.: Motion recovery for video content classification. ACM Trans. Inform. Sust. 13, 408–439 (1995)

    Article  Google Scholar 

  5. Liang, Q., Mendel, J.M.: MPEG VBR Video Traffic Modeling and Classification Using Fuzzy Technique. IEEE Trans. Fuzzy Systems 9, 183–193 (2001)

    Article  Google Scholar 

  6. Patel, N., Sethi, I.K.: Video shot detection and characterization for video databases. Pattern Recog. 30, 583–592 (1977)

    Article  Google Scholar 

  7. Rose, O.: Satistical properties of MPEG video traffic and their impact on traffic modeling in ATM systems. Univ. Wurzburg,Inst. Comput.Sci. Rep. 101 (1995)

    Google Scholar 

  8. Park, D.C., Dagher, I.: Gradient Based Fuzzy c-means ( GBFCM ) Algorithm. IEEE Int. Conf. on Neural Networks, ICNN 1994 3, 1626–1631 (1994)

    Article  Google Scholar 

  9. Looney, C.: Pattern Recognition Using Neural Networks, New York, pp. 252–254. Oxford University Press, Oxford (1997)

    Google Scholar 

  10. Manzoni, P., Cremonesi, P., Serazzi, G.: Workload models of VBR video traffic and their use in resource allocation policies. IEEE Trans. Networking 7, 387–397 (1999)

    Article  Google Scholar 

  11. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum, New York (1981)

    MATH  Google Scholar 

  12. Bezdek, J.C.: A convergence theorem fo the fuzzy ISODATA clustering algorithms. IEEE trans. pattern Anal. Mach. int. 2, 1–8 (1980); 24, 835–838 (1975)

    Google Scholar 

  13. Krunz, M., Sass, R., Hughes, H.: Statistical characteristics and multiplexing of MPEG streams. In: Proc. IEEE Int. Conf. Comput. Commun., INFOCOM 1995, Boston, MA, vol. 2, pp. 445–462 (1995)

    Google Scholar 

  14. Kohonen, T.: Learning Vector Quantization, Helsinki University of Technology, Laboratory of Computer and Information Science, Report TKK-F-A-601 (1986)

    Google Scholar 

  15. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well separated clusters. J. Cybern. 3, 32–75 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. Windham, M.P.: Cluster Validity for the Fuzzy cneans clustering algorithm. IEEE trans. pattern Anal. Mach. int. 4, 357–363 (1982)

    Article  Google Scholar 

  17. Gokcay, E., Principe, J.C.: Information Theoretic Clustering. IEEE Trans. Pattern Ana. Mach Int. 24, 158–171 (2002)

    Article  Google Scholar 

  18. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press Inc., London (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, DC. (2005). Classification of MPEG VBR Video Data Using Gradient-Based FCM with Divergence Measure. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_61

Download citation

  • DOI: https://doi.org/10.1007/11539506_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics