Skip to main content

The Extraction of Image’s Salient Points for Image Retrieval

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

  • 1136 Accesses

Abstract

A new salient point extraction method from Discrete Cosine Transformation (DCT) compressed domain for content-based image retrieval is proposed in this paper. Using a few significant DCT coefficients, we provide a robust self-adaptive salient point extraction algorithm, and based on salient points, we extract 13 rotation-, translation- and scale-invariant moments as the image shape features for retrieval. Our system reduces the amount of data to be processed and only needs to do partial entropy decoding and partial de-qualification. Therefore, our proposed scheme can accelerate the work of image retrieval. The experimental results also demonstrate it improves performance both in retrieval efficiency and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brunelli, R., Mich, O., Modena, C.M.: A survey on the automatic indexing of video data. Journal of Visual Communication and Image Representation 10, 78–112 (1999)

    Article  Google Scholar 

  2. Mandal, M.K., Idris, F., Panchanatha, S.: A critical evaluation of image and video indexing techniques in the compressed domain. Image and Vision Computing 17, 513–529 (1999)

    Article  Google Scholar 

  3. Wallace, G.K.: The JPEG still picture compression standard. ACM Communications 34(4), 31–45 (1991)

    Article  Google Scholar 

  4. Climer, S., Bhatia, S.K.: Image database indexing using JPEG coefficients. Pattern Recognition 35(11), 2479–2488 (2002)

    Article  MATH  Google Scholar 

  5. Feng, G., Jiang, J.: JPEG compressed image retrieval via statistical features. Pattern Recognition 36(4), 977–985 (2002)

    Article  Google Scholar 

  6. Chang, C.C., Chuang, J.C., Hu, Y.S.: Retrieval digital images from a JPEG compressed image database. Image and Vision Computing 22, 471–484 (2004)

    Article  Google Scholar 

  7. Shneier, M., Abdel-Mottaleb, M.: Exploiting the JPEG compression scheme for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 18, 849–853 (1996)

    Article  Google Scholar 

  8. Huang, X.L., Song, L., Shen, L.X.: Image retrieval method based on DCT domain. Journal of Electronics & Information Technology 12, 1786–1789 (2002)

    Google Scholar 

  9. Furht, B., Saksobhavivat, P.: A Fast Content-Based Video and Image Retrieval Technique Over Communication Channels. In: Proc. of SPIE Symposium on Multimedia Storage and Archiving Systems, Boston, MA (November 1998)

    Google Scholar 

  10. Jose, A., Guan, L.: Image Retrieval Based on Energy Histograms of the Low Frequency DCT Coefficients. In: IEEE International Conference on acoustics, Speech, and Signal Processing, vol. 6, pp. 3009–3012 (1999)

    Google Scholar 

  11. Sebe, N., Lew, M.S.: Comparing salient point detectors. Pattern Recognition Letters 24, 89–96 (2003)

    Article  MATH  Google Scholar 

  12. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactios Information Theory 8, 179–187 (1962)

    Google Scholar 

  13. Gupta, L., Srinath, M.D.: Contour sequence moments for the classification of closed planar shapes. Pattern Recognition 23, 267–272 (1987)

    Article  Google Scholar 

  14. Bres, S., Jolion, J.M.: Detection of Interest Points for Image Indexation. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 427–435. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Jiang, J., Armstrong, A., Feng, G.: Direct content access and extraction from JPEG compressed images. Pattern Recognition 35, 2511–2519 (2002)

    Article  MATH  Google Scholar 

  16. Schmid, C., Mohr, R.: Local Grayvalue Invariants for Image Retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence. 19, 530–535 (1997)

    Article  Google Scholar 

  17. Smith, S.M., Brady, J.M.: SUSAN - A New Approach to Low Level Image Processing. Int. Journal of Computer Vision. 23, 45–78 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, W., Tang, J., Li, C. (2005). The Extraction of Image’s Salient Points for Image Retrieval. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_69

Download citation

  • DOI: https://doi.org/10.1007/11539506_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics