Skip to main content

Adaptive Query Refinement Based on Global and Local Analysis

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

The goal of information retrieval (IR) is to identify documents which best satisfy users’ information need. The task of formulating an effective query is difficult in the sense that it requires users to predict the keywords that will appear in the desired documents. In our study we proposed a method of query refinement by combining candidate keywords with query operators. The method uses the concept Prime Keyword Set, which is a subset of whole keywords and obtained by global analysis of the target database. Considering user’s intension we generate rational size of candidates by local analysis based on several specified principles. The experiments are conducted to confirm the effectiveness and efficiency of our proposed method. Moreover, as an extension of our approach an online system is implemented to investigate the feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, pp. 24–34. Addison-Wesley, Reading (1999)

    Google Scholar 

  2. Carmel, D., Farchi, E., Petruschka, Y.: Automatic Query Refinement using Lexical Affinities with Maximal Information Gain. In: ACM SIGIR, pp. 283–290 (2002)

    Google Scholar 

  3. Carpineto, C., De Mori, R., Romano, G., Bigi, B.: An Information-Theoretic Approach to Automatic Query Expansion. ACM TOIS 19(1), 1–27 (2001)

    Article  Google Scholar 

  4. Croft, W.B., Cook, R., Wilder, D.: Providing government information on the Internet: Experience with THOMAS. In: Proceedings of the Digital Libraries Conference (DL 1995), pp. 19–24 (1995)

    Google Scholar 

  5. Cui, C., Chen, H., Furuse, K., Ohbo, N.: Web Query Refinement without Information Loss. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004. LNCS, vol. 3007, pp. 363–372. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. George, M.: Special Issue, WordNet: An On-line Lexical Database. International Journal of Lexicography 3(4) (1990)

    Google Scholar 

  7. Kraft, R., Zien, J.: Mining anchor text for query refinement. In: Proceedings of the 13th international conference on World Wide Web, pp. 666–674 (2004)

    Google Scholar 

  8. Mitra, M., Singhal, A., Buckley, C.: Improving Automatic Query Expansion. In: ACM SIGIR, pp. 206–214 (1999)

    Google Scholar 

  9. Vélez, B., et al.: Fast and Effective Query Refinement. In: ACM SIGIR, pp. 6–15 (1997)

    Google Scholar 

  10. Voorhees, E.M.: Query Expansion Using Lexical-Semantic Relations. In: ACM SIGIR, pp. 61–69 (1994)

    Google Scholar 

  11. Xu, J., Croft, W.B.: Improving the effectiveness of information retrieval with local context analysis. ACM Transactions on Information System 18(1), 79–112 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cui, C., Chen, H., Furuse, K., Ohbo, N. (2005). Adaptive Query Refinement Based on Global and Local Analysis. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_73

Download citation

  • DOI: https://doi.org/10.1007/11539506_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics