Skip to main content

Application of Fuzzy Similarity to Prediction of Epileptic Seizures Using EEG Signals

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

The prediction of epileptic seizures is a very attractive issue for all patients suffering from epilepsy in EEG (electroencephalograph) signals. It can assist to develop an intervention system to control / prevent upcoming seizures and change the current treatment method of epilepsy. This paper describes a new method based on wavelet transform and fuzzy similarity measurement to predict the seizures by using EEG signals. One part of the method is to calculate the energy and entropy of EEG data at the different scale; another part of this method is to calculate the similarity between the features set of the reference segment and the test segment using fuzzy measure. The test results of real rats show this method detect temporal dynamic changes prior to a seizure in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Litt, B., Echauz, J.: Prediction of epileptic seizures. The Lancet Neurology 1, 22–30 (2002)

    Article  Google Scholar 

  2. Fisher, R.S., Krauss, G.L., Ramsay, E., Laxer, K., Gates, J.: Assessment of vagus nerve stimulation for epilepsy: report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology 49, 293–297 (1997)

    Google Scholar 

  3. Lesser, R.P., Kim, S.H., Beyderman, L.: Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation. Neurology 53, 2073–2081 (1999)

    Google Scholar 

  4. Motamedi, G.K., Lesser, R.P., Miglioretti, D.L.: Optimizing parameters for terminating cortical afterdischarges with pulse stimulation. Epilepsia 43, 836–846 (2002)

    Article  Google Scholar 

  5. Iasemidis, L.D.: Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering 50, 549–558 (2003)

    Article  Google Scholar 

  6. Lehnertz, K.: Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy - an overview. International Journal of Psychophysiology 34, 45–52 (1999)

    Article  Google Scholar 

  7. Winterhalder, M., Maiwald, T., Voss, H.U., Aschenbrenner-Scheibe, R., Timmer, J., Schulze-Bonhage, A.: The seizure prediction characteristic: A general framework to assess and compare seizure prediction methods. Epilepsy and Behavior 4, 318–325 (2003)

    Article  Google Scholar 

  8. Li, X., Guan, X., Du, R.: Using damping time for epileptic seizures detection in EEG. In: Feng, D.D., Carson, E. (eds.) Modelling and Control in Biomedical Systems, pp. 255–258. Elsevier Ltd., Amsterdam (2003)

    Google Scholar 

  9. Li, X., Kapiris, P.G., Polygiannakis, J., Eftaxias, K.A., Yao, X.: Fractal spectral analysis of pre-epileptic seizures phase: in terms of criticality. Journal of Neural Engineering 2, 11–16 (2005)

    Article  Google Scholar 

  10. Li, X., Ouyang, G., Yao, X., Guan, X.: Dynamical Characteristics of Pre-epileptic Seizures in Rats with Recurrence Quantification Analysis. Physics Letters A. 333, 164–171 (2004)

    Article  MATH  Google Scholar 

  11. Geva, A.B., Kerem, D.H.: Forecasting generalized epileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering. IEEE Transactions on Biomedical Engineering 45, 1205–1216 (1998)

    Article  Google Scholar 

  12. Meyer, Y.: Wavelets. Applications and Algorithms. SIAM, Philadelphia (1993)

    Google Scholar 

  13. Hyung, L.K., Song, Y.S., Lee, K.M.: Similarity measure between fuzzy sets and between elements. Fuzzy Sets and Systems 62, 291–293 (1994)

    Article  MathSciNet  Google Scholar 

  14. Wang, W.J.: New similarity measures on fuzzy sets and on elements. Fuzzy Sets and Systems 85, 305–309 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X., Yao, X. (2005). Application of Fuzzy Similarity to Prediction of Epileptic Seizures Using EEG Signals. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_80

Download citation

  • DOI: https://doi.org/10.1007/11539506_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics