Skip to main content

A Balanced Model Reduction for T-S Fuzzy Systems with Integral Quadratic Constraints

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3613))

Included in the following conference series:

Abstract

This paper deals with a balanced model reduction for a class of nonlinear systems with integral quadratic constraints(IQC’s) using a T-S(Takagi-Sugeno) fuzzy approach. We define a generalized controllability Gramian and a generalized observability Gramian for a stable T-S fuzzy systems with IQC’s. We obtain a balanced state space realization using the generalized controllability and observability Gramians and obtain a reduced model by truncating not only states but also IQC’s from the balanced state space realization. We also present an upper bound of the approximation error. The generalized controllability Gramian and observability Gramian can be computed from solutions of linear matrix inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Moore, B.C.: Principal component analysis in linear systems: Controllability, observability and model reduction. IEEE Trans. Automatic Contr. 26, 17–32 (1982)

    Article  Google Scholar 

  2. Pernebo, L., Silverman, L.M.: Model reduction via balanced state space representations. IEEE Trans. Automatic Contr. 27, 382–387 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their error bounds. Int. J. Control 39, 1115–1193 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Liu, Y., Anderson, B.D.O.: Singular perturbation approximation of balanced systems. Int. J. Control 50, 1379–1405 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beck, C.L., Doyle, J., Glover, K.: Model reduction of multidimensional and uncertain systems. IEEE Trans. Automatic Contr. 41, 1466–1477 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Wood, G.D., Goddard, P.J., Glover, K.: Approximation of linear parameter varying systems. In: Proceedings of the 35th CDC, Kobe, Japan, December 1996, pp. 406–411 (1996)

    Google Scholar 

  7. Wu, F.: Induced [graphics object to be inserted manually] norm model reduction of polytopic uncertain linear systems. Automatica 32(10), 1417–1426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Haddad, W.M., Kapila, V.: Robust, reduced order modeling for state space systems via parameter dependent bounding functions. In: Proceedings of American control conference, Seattle, Washington, June 1996, pp. 4010–4014 (1996)

    Google Scholar 

  9. Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Systems 4(1), 1–13 (1996)

    Article  Google Scholar 

  10. Nguang, S.K., Shi, P.: Fuzzy output feedback control design for nonlinear systems: an LMI approach. IEEE Trans. Fuzzy Systems 11(3), 331–340 (2003)

    Article  Google Scholar 

  11. Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Systems 9(2), 324–332 (2001)

    Article  Google Scholar 

  12. Yakubovich, V.A.: Frequency conditions of absolute stability of control systems with many nonlinearities. Automatica Telemekhanica 28, 5–30 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoo, SH., Choi, BJ. (2005). A Balanced Model Reduction for T-S Fuzzy Systems with Integral Quadratic Constraints. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3613. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539506_99

Download citation

  • DOI: https://doi.org/10.1007/11539506_99

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28312-6

  • Online ISBN: 978-3-540-31830-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics