Skip to main content

Consensus Control for Networks of Dynamic Agents via Active Switching Topology

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3612))

Included in the following conference series:

Abstract

This paper investigates the average-consensus problem for networks of dynamic agents. A consensus protocol based on active switching topology for solving the average-consensus problem of the network is proposed. Within such a topology, a finite set of candidate unconnected graphs is used and we change the topology actively according to the state of the network. The advantage of such mechanism is that it decreases the communication complexity/cost dramatically. The simulation results are presented that are consistent with our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Mateo (1997)

    Google Scholar 

  2. Fax, A., Murray, R.M.: Information flow and cooperative cotnrol of vehicle formations. IEEE Trans. Automat. Contr. 49, 1465–1476 (2004)

    Article  MathSciNet  Google Scholar 

  3. Mesbahi, M.: On a dynamic extension of the theory of graphs. In: Proceedings of the American Control Conference, pp. 1234–1239 (2002)

    Google Scholar 

  4. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. Computer Graphics (ACM SIGGRAPH 1987) 21, 25–34 (1987)

    Google Scholar 

  5. Gazi, V., Passino, K.M.: Stability Analysis of Swarms. IEEE Trans. Automat. Contr. 48, 692–697 (2003)

    Article  MathSciNet  Google Scholar 

  6. Gazi, V., Passino, K.M.: Stability Analysis of Social Foraging Swarms. IEEE Trans. System, Man and Cybernetics-B. 34, 539–557 (2004)

    Google Scholar 

  7. Liu, Y., Passino, K.M.: Stable Social Foraging Swarms in a Noisy Environment. IEEE Trans. Automat. Contr. 49, 30–44 (2004)

    Article  MathSciNet  Google Scholar 

  8. Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability Analysis of M-Dimensional Asynchronous Swarms With a fixed Communication Topology. IEEE Trans. Automat. Contr. 48, 76–95 (2003)

    Article  MathSciNet  Google Scholar 

  9. Liu, Y., Passino, K.M., Polycarpou, M.M.: Stability Analysis of One-Dimensional Asynchronous Swarms. IEEE Trans. Automat.Contr. 48, 1848–1854 (2003)

    Article  MathSciNet  Google Scholar 

  10. Mesbahi, M., Hadegh, F.: Formation flying of multiple spacecraft via graphs, matrix ineuqalities and switching. AIAA J. guid., Control, Dyna. 24, 369–377 (2000)

    Article  Google Scholar 

  11. Desai, J.P., Ostrowski, J.P., Kumar, V.: Modeling and control of formations of nonholonomic mobile robots. IEEE Trans. Robot. Automat. 17, 905–908 (2001)

    Google Scholar 

  12. Lawton, J.R.T., Beard, R.W., Yong, B.J.: Adecentralized apprach to formation maneuvers. IEEE Trans. Robot. Automat. 19, 933–941 (2003)

    Article  Google Scholar 

  13. Vicsek, T., Czirok, A., Jacob, E., Cohen, I., Schochet, O.: Novel type of phase transitions in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  Google Scholar 

  14. Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Automat. Contr. 48, 988–1001 (2003)

    Article  MathSciNet  Google Scholar 

  15. Savkin, A.V.: Coordinate collective motion of groups of autonomous mobile robots: analysis of vicsek’s model. IEEE Trans. Automat. Contr. 49, 981–983 (2004)

    Article  MathSciNet  Google Scholar 

  16. Saber, R.O., Murray, R.M.: Consensus Problems in Networks of Agents with Switching Topology and Time-delays. IEEE Trans. Automat. Contr. 49, 1520–1533 (2004)

    Article  Google Scholar 

  17. Saber, R.O., Murray, R.M.: Consensus Protocols for networks of dynamic agents. In: Proc. Amer. Control Conf., pp. 951–956 (2003)

    Google Scholar 

  18. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable Flocking of Mobile Agents, Part I: Fixed Topology. In: Proceedings of the IEEE Conference on Decision and Control, vol. 2, pp. 2010–2015 (2003)

    Google Scholar 

  19. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable Flocking of Mobile Agents, Part II: Dynamic Topology. In: Proceedings of the IEEE Conference on Decision and Control, vol. 2, pp. 2016–2021 (2003)

    Google Scholar 

  20. Shi, H., Wang, L., Chu, T.: Swarming behavior of multi-agent systems. In: Proc. of the 23rd Chinese Control Conference, pp. 1027–1031 (2004)

    Google Scholar 

  21. Shi, H., Wang, L., Chu, T., Zhang, W.: Coordination of a group of mobile autonomous agents. In: International Conference on Advances in intelligent Systems—Theory and Applications. (to appear)

    Google Scholar 

  22. Wang, L., Shi, H., Chu, T., Chen, T., Zhang, L.: Aggregation of forging swarms. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 766–777. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Liu, B., Chu, T., Wang, L., Wang, Z.: Swarm Dynamics of A Group of Mobile Autonomous Agents. Chin. Phys. Lett. 22, 254–257 (2005)

    Article  Google Scholar 

  24. Liu, B., Chu, T., Wang, L.: Collective Motion in A Group of Mobile Autonomous Agents. In: IEEE International Conference on Advance in Intelligent Systems-Theory and Applications (to appear)

    Google Scholar 

  25. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  26. Graver, J., Servatius, H., Servatius, B.: Chemical Oscillators, Waves, and Turbulance. Springer, Berlin (1984)

    Google Scholar 

  27. Acebron, J.A., Spigler, R.: Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators. Physical Review Letters 81, 2229–2232 (1998)

    Article  Google Scholar 

  28. Toner, J., Tu, Y.H.: Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E. 58, 4828–4858 (1998)

    Article  MathSciNet  Google Scholar 

  29. Levine, H., Rappel, W.J., Cohen, I.: Self-organization in systems of self-propelled particles. Physical Review E. 63, 17101–17101 (2001)

    Article  Google Scholar 

  30. Rosenblum, M.G., Pikovsky, A.S.: Controlling Synchronization in an Ensemble of Globally Coupled Oscillators. Physical Review Letters 92, 114102-1–114102-4 (2004)

    Google Scholar 

  31. Kiss, I.Z., Hudson, J.L., Escalona, J., Parmananda, P.: Noise-aided synchronization of coupled chaotic electrochemical oscillators. Physical Review E. 70, 026210-1–026210-8 (2004)

    Google Scholar 

  32. Scire, A., Colet, P., Miguel, M.S.: Phase synchronization and polarization ordering of globally coupled oscillators. Physical Review E. 70, 035201-1–035201-4 (2004)

    Google Scholar 

  33. Woafo, P., Kadji, H.G.E.: Synchronized states in a ring of mutually coupled self-sustained electrical oscillators. Physical Review E. 69, 046206-1–046206-9 (2004)

    Google Scholar 

  34. Rosenblum, M.G., Pikovsky, A.S.: Controlling Synchronization in an Ensemble of Globally Coupled Oscillators. Physical Review Letters. 92, 114102-1–114102-4 (2004)

    Google Scholar 

  35. Biggs, N.: Algebraic Graph Theory. Cambridge Univ. Press, Cambridge (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xie, G., Wang, L. (2005). Consensus Control for Networks of Dynamic Agents via Active Switching Topology. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539902_51

Download citation

  • DOI: https://doi.org/10.1007/11539902_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28320-1

  • Online ISBN: 978-3-540-31863-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics