Abstract
The paper proposes a modified particle swarm optimizer for tracking dynamic systems. In the new algorithm, the changed local optimum and global optimum are introduced to guide the movement of each particle and avoid making direction and velocity decisions on the basis of the outdated information. An environment influence factor is put forward based on the two optimums above, which dynamically decide the change of the inertia weight. The combinations of the different local optimum update strategy and local inertia weight update strategy are tested on the parabolic benchmark function. The results on the benchmark function with various severities suggest that modified particle swarm optimizer performs better in convergence speed and aggregation accuracy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Eberhart, R.C., Shi, Y.H.: Particle Swarm Optimization: Development, Applications and Resources. In: Proceedings of Congress on Evolutionary Computation, Seoul, Korea, pp. 81–86 (2001)
Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)
Blackwell, T.: Swarms in Dynamic Environments. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1–12. Springer, Heidelberg (2003)
Esquivel, S.C., Coello Coello, C.A.: Particle Swarm Optimization in Non-stationary Environments. In: Lemaître, C., Reyes, C.A., González, J.A. (eds.) IBERAMIA 2004. LNCS (LNAI), vol. 3315, pp. 757–766. Springer, Heidelberg (2004)
Blackwell, T., Branke, J.: Multi-swarm Optimization in Dynamic Environments. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489–500. Springer, Heidelberg (2004)
Janson, S., Middendorf, M.: A Hierarchical Particle Swarm Optimizer for Dynamic Optimization Problems. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 513–524. Springer, Heidelberg (2004)
Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimizer in noisy and continuously changing environments. In: Hamza, M.H. (ed.) Proceeding of the IASTED International Conference on Artificial Intelligence and Soft Computing, pp. 289–294. ISATED/ACTA Press, Cancun (2001)
Carlisle, A., Dozier, G.: Adapting PSO to dynamic environment. In: Proceedings of international conference on artificial Intelligence, Las Vegas, Nevada, USA, pp. 429–434 (2000)
Carlisle, A., Dozier, G.: Tracking Changing Extrema with Particle Swarm Optimization. Auburn University Technical Report CSSE01-08 [R] (2001)
Hu, X., Eberhart, R.C.: Adaptive Particle swarm optimization: Detection and Response to Dynamic Systems, pp. 1666–1670 (2002)
Eberhart, R.C., Shi, Y.: Tracking and Optimizing Dynamic Systems with Particle Swarms. In: Proceedings Congress on Evolutionary Computation 2001, pp. 94–97. IEEE Press, Piscataway (2001)
Xuanping, Z., Yuping, D., Guoqiang, Q., Zheng, Q.: An Adaptive Particle Swarm Optimization with Dynamically Changing Weight (in Chinese). Journal of Xi’an Jiaotong University (August 2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, X., Du, Y., Qin, Z., Qin, G., Lu, J. (2005). A Modified Particle Swarm Optimizer for Tracking Dynamic Systems. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539902_72
Download citation
DOI: https://doi.org/10.1007/11539902_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28320-1
Online ISBN: 978-3-540-31863-7
eBook Packages: Computer ScienceComputer Science (R0)