Skip to main content

A Computational Pixelization Model Based on Selective Attention for Artificial Visual Prosthesis

  • Conference paper
Advances in Natural Computation (ICNC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3612))

Included in the following conference series:

  • 1768 Accesses

Abstract

Inspired by the ongoing research on artificial visual prosthesis, a novel pixelization visual model based on the selection of local attention-drawing features is proposed, and a subjective scoring experiment as a cognitive assessment is designed to evaluate the performance of the model. The results of the experiment reveal that the model can accentuate the areas with prominent features in the original image, so as to give observers a subjective perception of rich visual information. Thus, the model will provide a new approach for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dagnelie, G., Massof, R.W.: Toward an Artificial eye. IEEE Spectrum 33, 21–29 (1996)

    Article  Google Scholar 

  2. Liu, W., Sivaprakasam, M., et al.: Electronic Visual Prosthesis. Artificial Organs 27(11), 986–995 (2003)

    Article  Google Scholar 

  3. Mehenti, N.Z., Fishman, H.A., Bent, S.F.: Pushing the limits of artificial vision. IEEE Potentials 23(1), 21–23 (2004)

    Article  Google Scholar 

  4. Cha, K., Horch, K.W., Normann, R.A.: Mobility performance with a pixelized vision system. Vision Research 32, 1367–1372 (1992)

    Article  Google Scholar 

  5. Normann, R.A., Maynard, E.M., et al.: A neural interface for a cortical vision prosthesis. Vision Research 39(15), 2577–2587 (1999)

    Article  Google Scholar 

  6. Dobelle, W.H.: Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO Journal 46, 3–9 (2000)

    Article  Google Scholar 

  7. Veraart, C., Wanet-Defalque, M.-C., et al.: Pattern Recognition with the Optic Nerve Visual Prosthesis. Artificial Organs 27(11), 996–1004 (2003)

    Article  Google Scholar 

  8. Suaning, G.J., Hallum, L.E., et al.: Phosphene Vision: Development of a portable visual prosthesis system for the blind. In: Proceedings of the 25th Annual International Conference of the IEEE/EMBS, vol. 3, pp. 2047–2050 (2003)

    Google Scholar 

  9. Humayun, M.S., Weiland, J.D., et al.: Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Research 43(24), 2573–2581 (2003)

    Article  Google Scholar 

  10. Rizzo, J., Wyatt, J., et al.: Methods and Perceptual Thresholds for Short-Term Electrical Stimulation of Human Retina with Microelectrode Arrays. Investigative Ophthalmology and Visual Science 44(12), 5355–5361 (2003)

    Article  Google Scholar 

  11. Boyle, J.R., Maeder, A.J., Boles, W.W.: Challenges in digital imaging for artificial human vision. In: Proceedings of SPIE, vol. 4299, pp. 533–543 (2001)

    Google Scholar 

  12. Hayes, J.S., Yin, V.T., et al.: Visually Guided Performance of Simple Tasks Using Simulated Prosthetic Vision. Artificial Organs 27(11), 1016–1028 (2003)

    Article  Google Scholar 

  13. Thompson, R., Barnett, G., et al.: Facial recognition using simulated prosthetic pixelized vision. Investigative Ophthalmology & Vision Science 44(11), 5035–5042 (2003)

    Article  Google Scholar 

  14. Dowling, J., Maeder, A.J., Boles, W.W.: Mobility enhancement and assessment for a visual prosthesis. In: Proceedings of SPIE, vol. 5369, pp. 780–791 (2004)

    Google Scholar 

  15. Sommerhalder, J., Rappaz, B., Haller, R.D., Fonrnos, A.P., Safran, A.B., et al.: Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Research 44, 1693–1706 (2004)

    Article  Google Scholar 

  16. Gilmont, T., Verians, X., Legat, J.D., Veraart, C.: Resolution reduction by growth of zones for visual prosthesis. In: Proceedings of International Conference on Image Processing, vol. 1, pp. 299–302 (1996)

    Google Scholar 

  17. Privitera, C.M., Stark, L.W.: Algorithms for defining visual region-of-interest: comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 970–981 (2000)

    Article  Google Scholar 

  18. Bai, J.: Simulation and modeling of biological systems. Tsinghua University Press (1994)

    Google Scholar 

  19. Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)

    Article  Google Scholar 

  20. Mannan, S.K., Ruddock, K.H., Wooding, D.S.: The relationship between the Locations of Spatial Features and Those of Fixations Made during Visual Examination of Briefly Presented Images. Spatial Vision 10(3), 165–188 (1996)

    Article  Google Scholar 

  21. Gilbert, C.D., Wiesel, T.N.: Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. Journal of Neuroscience 9, 2432–2442 (1992)

    Google Scholar 

  22. Levitt, J.B., Lund, J.S.: Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76 (1997)

    Article  Google Scholar 

  23. Sillito, A.M., Grieve, K.L., Jones, H.E., Cudeiro, J., Davis, J.: Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995)

    Article  Google Scholar 

  24. Zenger, B., Sagi, D.: Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection. Vision Research 36, 2497–2513 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, R., Zhang, X., Hu, G. (2005). A Computational Pixelization Model Based on Selective Attention for Artificial Visual Prosthesis. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539902_80

Download citation

  • DOI: https://doi.org/10.1007/11539902_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28320-1

  • Online ISBN: 978-3-540-31863-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics