Abstract
Inspired by the ongoing research on artificial visual prosthesis, a novel pixelization visual model based on the selection of local attention-drawing features is proposed, and a subjective scoring experiment as a cognitive assessment is designed to evaluate the performance of the model. The results of the experiment reveal that the model can accentuate the areas with prominent features in the original image, so as to give observers a subjective perception of rich visual information. Thus, the model will provide a new approach for future research.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dagnelie, G., Massof, R.W.: Toward an Artificial eye. IEEE Spectrum 33, 21–29 (1996)
Liu, W., Sivaprakasam, M., et al.: Electronic Visual Prosthesis. Artificial Organs 27(11), 986–995 (2003)
Mehenti, N.Z., Fishman, H.A., Bent, S.F.: Pushing the limits of artificial vision. IEEE Potentials 23(1), 21–23 (2004)
Cha, K., Horch, K.W., Normann, R.A.: Mobility performance with a pixelized vision system. Vision Research 32, 1367–1372 (1992)
Normann, R.A., Maynard, E.M., et al.: A neural interface for a cortical vision prosthesis. Vision Research 39(15), 2577–2587 (1999)
Dobelle, W.H.: Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO Journal 46, 3–9 (2000)
Veraart, C., Wanet-Defalque, M.-C., et al.: Pattern Recognition with the Optic Nerve Visual Prosthesis. Artificial Organs 27(11), 996–1004 (2003)
Suaning, G.J., Hallum, L.E., et al.: Phosphene Vision: Development of a portable visual prosthesis system for the blind. In: Proceedings of the 25th Annual International Conference of the IEEE/EMBS, vol. 3, pp. 2047–2050 (2003)
Humayun, M.S., Weiland, J.D., et al.: Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Research 43(24), 2573–2581 (2003)
Rizzo, J., Wyatt, J., et al.: Methods and Perceptual Thresholds for Short-Term Electrical Stimulation of Human Retina with Microelectrode Arrays. Investigative Ophthalmology and Visual Science 44(12), 5355–5361 (2003)
Boyle, J.R., Maeder, A.J., Boles, W.W.: Challenges in digital imaging for artificial human vision. In: Proceedings of SPIE, vol. 4299, pp. 533–543 (2001)
Hayes, J.S., Yin, V.T., et al.: Visually Guided Performance of Simple Tasks Using Simulated Prosthetic Vision. Artificial Organs 27(11), 1016–1028 (2003)
Thompson, R., Barnett, G., et al.: Facial recognition using simulated prosthetic pixelized vision. Investigative Ophthalmology & Vision Science 44(11), 5035–5042 (2003)
Dowling, J., Maeder, A.J., Boles, W.W.: Mobility enhancement and assessment for a visual prosthesis. In: Proceedings of SPIE, vol. 5369, pp. 780–791 (2004)
Sommerhalder, J., Rappaz, B., Haller, R.D., Fonrnos, A.P., Safran, A.B., et al.: Simulation of artificial vision: II. Eccentric reading of full-page text and the learning of this task. Vision Research 44, 1693–1706 (2004)
Gilmont, T., Verians, X., Legat, J.D., Veraart, C.: Resolution reduction by growth of zones for visual prosthesis. In: Proceedings of International Conference on Image Processing, vol. 1, pp. 299–302 (1996)
Privitera, C.M., Stark, L.W.: Algorithms for defining visual region-of-interest: comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(9), 970–981 (2000)
Bai, J.: Simulation and modeling of biological systems. Tsinghua University Press (1994)
Itti, L., Koch, C.: A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40, 1489–1506 (2000)
Mannan, S.K., Ruddock, K.H., Wooding, D.S.: The relationship between the Locations of Spatial Features and Those of Fixations Made during Visual Examination of Briefly Presented Images. Spatial Vision 10(3), 165–188 (1996)
Gilbert, C.D., Wiesel, T.N.: Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. Journal of Neuroscience 9, 2432–2442 (1992)
Levitt, J.B., Lund, J.S.: Contrast dependence of contextual effects in primate visual cortex. Nature 387, 73–76 (1997)
Sillito, A.M., Grieve, K.L., Jones, H.E., Cudeiro, J., Davis, J.: Visual cortical mechanisms detecting focal orientation discontinuities. Nature 378, 492–496 (1995)
Zenger, B., Sagi, D.: Isolating excitatory and inhibitory nonlinear spatial interactions involved in contrast detection. Vision Research 36, 2497–2513 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, R., Zhang, X., Hu, G. (2005). A Computational Pixelization Model Based on Selective Attention for Artificial Visual Prosthesis. In: Wang, L., Chen, K., Ong, Y.S. (eds) Advances in Natural Computation. ICNC 2005. Lecture Notes in Computer Science, vol 3612. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11539902_80
Download citation
DOI: https://doi.org/10.1007/11539902_80
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28320-1
Online ISBN: 978-3-540-31863-7
eBook Packages: Computer ScienceComputer Science (R0)