Abstract
In this paper, we extend the locally nearest neighbor classifiers to tackle the nonlinear classification problems via the kernel trick. The better performance is confirmed by the handwritten zip code digits classification experiments on the US Postal Service (USPS) database.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schölkopf, B., Smola, A.J., Müller, K.-R.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. In: Neural Computation, vol. 10, pp. 1299–1319. MIT Press, Cambridge (1998)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)
Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Transaction On Information Theory 13, 21–27 (1967)
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
Zheng, W., Zhao, L., Zou, C.: Locally nearest neighbor classifiers for pattern classification. Pattern Recognition 37, 1307–1309 (2004)
Schölkopf, B., Burges, C., Vapnik, V.: Extracting support data for a given task. In: Fayyad, U.M., Uthurusamy, R. (eds.) Proceedings, First Intl. Conference on Knowledge Discovery and Data Mining, AAAI Press, Menlo Park
Le Cun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.J.: Backpropagation applied to handwritten zip code recognition. In: Neural Computation, vol. 1, pp. 541–551. MIT Press, Cambridge (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zheng, W., Zou, C., Zhao, L. (2005). Generalized Locally Nearest Neighbor Classifiers for Object Classification. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11540007_13
Download citation
DOI: https://doi.org/10.1007/11540007_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28331-7
Online ISBN: 978-3-540-31828-6
eBook Packages: Computer ScienceComputer Science (R0)