Skip to main content

A Novel Visualization Classifier and Its Applications

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3614))

Included in the following conference series:

  • 1314 Accesses

Abstract

Classifiers, as one of the important tools of analyzing gene expression data in the post-genomic epoch, have been used widely in the classification of different cancer types in the past few years. Although most existing classifiers have high classification accuracy, the process of classification is a black box and they can not give biologists more information and interpretable results of classification. In this paper, we propose a novel visualization cancer classification method. Besides offering high classification accuracy, the method can help us identify complex disease-related genes and assess gene expression variation during the process of classification. The results of classification are natural and interpretable and the process of classification is visible. To evaluate the performance of the method we have applied the proposed method to three public data sets. The experimental results demonstrate that the approach is feasible and useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brazma, A., Vilo, J.: Minireview: Gene expression data analysis. Federation of European Biochemical Societies 480, 17–24 (2000)

    Google Scholar 

  2. Welsh, J.B., Zarrinkar, P.P., et al.: Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc.Natl Acad. Sci.USA 98, 1176–1181 (2001)

    Article  Google Scholar 

  3. Eisen, M.B., Spellman, P.T., et al.: Cluster analysis and display of genome-wide expression patterns. Proc.Natl Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  4. Alizadeh, A.A., Eisen, M.B., et al.: Distinct types of diffuse large B-Cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  5. Alter, O., Brown, P.O., et al.: Singular value decomposition for genome-wide expression data processing and modeling. Proc.Natl Acad. Sci. USA 97, 10101–10106 (2000)

    Article  Google Scholar 

  6. Holter, N.S., Maritan, A., et al.: Dynamic modeling of gene Expression Data. Proc.Natl Acad. Sci. USA 98, 1693–1698 (2001)

    Article  Google Scholar 

  7. Wen, X., Fuhrman, S., et al.: Large-scale temporal gene expression mapping of central nervous system development. Proc.Natl Acad. Sci. USA 95, 334–339 (1998)

    Article  Google Scholar 

  8. Zhang, H., Yu, C.-Y., et al.: Recursive partitioning for tumor classification with gene expression microarray data. Proc.Natl Acad. Sci. USA 98, 6730–6735 (2001)

    Article  Google Scholar 

  9. Golub, T.R., Slonim, D.K., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  10. Yeung, K.Y., Haynor, D.R., et al.: Validating clustering for gene expression data. Bioinformatics 17, 309–318 (2001)

    Article  Google Scholar 

  11. Holter, N.S., Mitra, M., et al.: Fundamental patterns underlying gene expression profiles: simplicity from complexity. Proc.Natl Acad. Sci. USA 97, 8409–8414 (2000)

    Article  Google Scholar 

  12. Tamayo, P., Slonim, D., et al.: Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc.Natl Acad. Sci.USA 96, 2907–2912 (1999)

    Article  Google Scholar 

  13. Furey, T.S., Cristianini, N., et al.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 906–914 (2002)

    Article  Google Scholar 

  14. Ewing, R.M., Cherry, J.M.: Visualization of expression clusters using Sammon’s no-linear mapping. Bioinformatics 17, 658–659 (2001)

    Article  Google Scholar 

  15. Ben-Dor, A., Bruhn, L., et al.: Tissue classification with gene expression profiles. In: Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, Tokyo, Japan (2000)

    Google Scholar 

  16. Model, F., Adorjan, P., et al.: Feature selection for DNA methylation based cancer classification. Bioinformatics 17, S157–S164 (2001)

    Google Scholar 

  17. Ding, C.H.Q.: Analysis of gene expression profiles: class discovery and leaf ordering. In: RECOMB 2002, pp. 127–136 (2002)

    Google Scholar 

  18. Wuju, L., Momiao, X.: Tclass: tumor classification system based on gene expression profile. Bioinformatics 18, 325–326 (2002)

    Article  Google Scholar 

  19. Li, L., Clarice, R., et al.: Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method. Bioinformatics 17, 1131–1142 (2001)

    Article  Google Scholar 

  20. Alon, U., Barkai, N., et al.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed Oligonucleotide arrays. Proc.Natl Acad. Sci. USA 96, 6745–6750 (1999)

    Article  Google Scholar 

  21. Armstrong, S.A., Staunton, J.E., et al.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30, 41–47 (2002)

    Article  Google Scholar 

  22. Joachims, T.: Making large-Scale SVM Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, MIT-Press, Cambridge (1999)

    Google Scholar 

  23. Wang, X., Lee, G., et al.: A member of the LIM/double-finger family displaying coordinate serum induction with c-myc. J Biol Chem. 267, 9176–9184 (1992)

    Google Scholar 

  24. Heikkila, R., Schwab, G., et al.: A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1. Nature 328, 445–449 (1987)

    Article  Google Scholar 

  25. Xia, L., Rao, S., et al.: Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucleic Acids Res. 32, 2685–2694 (2004)

    Article  Google Scholar 

  26. Su, Y., Murali, T.M., et al.: RankGene: Identification of diagnostic genes based on expression data. Bioinformatics 19, 1578–1579 (2003)

    Article  Google Scholar 

  27. Gutgemann, A., Golob, M., et al.: Isolation of invasion-associated cDNAs in melanoma. Arch Dermatol Res. 293, 283–290 (2001)

    Article  Google Scholar 

  28. Fox, S.H., Whalen, G.F., et al.: Angiogenesis in normal tissue adjacent to colon cancer. J. Surg. Oncol. 69, 230–234 (1998)

    Article  Google Scholar 

  29. Toshina, K., Hirata, I., et al.: Enprostil, a prostaglandin-E(2) analogue, inhibits interleukin-8 production of human colonic epithelial cell lines. Scand. J. Immunol. 52, 570–575 (2000)

    Article  Google Scholar 

  30. Inoue, K., Perrotte, P., et al.: Gene therapy of human bladder cancer with adenovirus-mediated antisense basic fibroblast growth factor. Clin. Cancer Res. 6, 4422–4431 (2000)

    Google Scholar 

  31. Kowalski, J., Denhardt, D.T.: Regulation of the mRNA for monocyte-derived neutrophil-activating peptide in differentiating HL60 promyelocytes. Mol. Cell Biol. 9, 1946–1957 (1989)

    Google Scholar 

  32. Thommes, P., Fett, R., et al.: Properties of the nuclear P1 protein, a mammalian homologue of the yeast Mcm3 replication protein. Nucleic Acids Res. 20, 1069–1074 (1992)

    Article  Google Scholar 

  33. Jindal, S., Dudani, A.K., et al.: Primary structure of a human mitochondrial protein homologous to the bacteriacterial and plant chaperonins and to the 65-Kilodalton mycobacterial antigen. Mol. Cell Biol. 9, 1989–2279 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, J., Tang, X.L., Li, X. (2005). A Novel Visualization Classifier and Its Applications. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11540007_157

Download citation

  • DOI: https://doi.org/10.1007/11540007_157

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28331-7

  • Online ISBN: 978-3-540-31828-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics