Skip to main content

Supervised Learning for Classification

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3614))

Included in the following conference series:

  • 990 Accesses

Abstract

Supervised local tangent space alignment is proposed for data classification in this paper. It is an extension of local tangent space alignment, for short, LTSA, from unsupervised to supervised learning. Supervised LTSA is a supervised dimension reduction method. It make use of the class membership of each data to be trained in the case of multiple classes, to improve the quality of classification. Furthermore we present how to determine the related parameters for classification and apply this method to a number of artificial and realistic data. Experimental results show that supervised LTSA is superior for classification to other popular methods of dimension reduction when combined with simple classifiers such as the k-nearest neighbor classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Devijver, P., Kittler, J.: Pattern recognition, a statistical approach. Prentice-Hall, London (1982)

    MATH  Google Scholar 

  2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  3. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: a review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 4–37 (2000)

    Article  Google Scholar 

  4. Kohonen, T.: Self-organizing Maps, 3rd edn. Springer, Heidelberg (2000)

    Google Scholar 

  5. Bishop, C., Svensén, M., Williams, C.: Gtm: The generative topographic mapping. Neural Computation 10, 215–234 (1998)

    Article  Google Scholar 

  6. Hastie, T., Stuetzle, W.: Principal curves. J. Am. Statistical Assoc. 84 (1988)

    Google Scholar 

  7. DeMers, D., Cottrell, G.: Non-linear dimensionality reduction. In: Giles, C.L., Hanson, S.J., Cowan, J.D. (eds.) Advances in Neural Information Processing Systems 5, San Mateo, CA, pp. 580–587. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  8. Tipping, M.E., Bishop, C.M.: Mixtures of probabilistic principal component analyzers. Neural Computation 11, 443–482 (1999)

    Article  Google Scholar 

  9. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing 26, 313–338 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Roweis, S., Saul, L.: Nonlinear dimension reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  11. Li, H., Teng, L., Chen, W., Shen, I.-F.: Supervised learning on local tangent space. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 546–551. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Li, H., Chen, W., Shen, I.-F.: Supervised local tangent space alignment for classification. In: IJCAI 2005, poster paper (2005) (to appear)

    Google Scholar 

  13. Blake, C., Merz, C.: Uci repository of machine learning databases (1998)

    Google Scholar 

  14. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 13, 71–86 (1991)

    Article  Google Scholar 

  15. de Ridder, D., Duin, R.: Locally linear embedding for classification. Technical Report PH-2002-01, Pattern Recogniion Group, Dept. of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, H., Chen, W., Shen, IF. (2005). Supervised Learning for Classification. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11540007_7

Download citation

  • DOI: https://doi.org/10.1007/11540007_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28331-7

  • Online ISBN: 978-3-540-31828-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics