Skip to main content

On the On-line Learning Algorithms for EEG Signal Classification in Brain Computer Interfaces

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3614))

Included in the following conference series:

Abstract

The on-line update of classifiers is an important concern for categorizing the time-varying neurophysiological signals used in brain computer interfaces, e.g. classification of electroencephalographic (EEG) signals. However, up to the present there is not much work dealing with this issue. In this paper, we propose to use the idea of gradient decorrelation to develop the existent basic Least Mean Square (LMS) algorithm for the on-line learning of Bayesian classifiers employed in brain computer interfaces. Under the framework of Gaussian mixture model, we give the detailed representation of Decorrelated Least Mean Square (DLMS) algorithm for updating Bayesian classifiers. Experimental results of off-line analysis for classification of real EEG signals show the superiority of the on-line Bayesian classifier using DLMS algorithm to that using LMS algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nicolelis, M.A.L.: Actions from Thoughts. Nature 409, 403–407 (2001)

    Article  Google Scholar 

  2. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-Computer Interfaces for Communication and Control. Clinical Neurophysiology 113, 767–791 (2002)

    Article  Google Scholar 

  3. Vaughan, T.M.: Guest Editorial Brain-Computer Interface Technology: A Review of the Second International Meeting. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 94–109 (2003)

    Article  Google Scholar 

  4. Ebrahimi, T., Vesin, J.M., Garcia, G.: Brain-Computer Interfaces in Multimedia Communication. IEEE Signal Processing Magazine 20, 14–24 (2003)

    Article  Google Scholar 

  5. Millán, J.R., Renkens, F., Mouriño, J., Gerstner, W.: Non-Invasive Brain-Actuated Control of a Mobile Robot. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 1121–1126 (2003)

    Google Scholar 

  6. Millán, J.R., Renkens, F., Mouriño, J., Gerstner, W.: Brain-Actuated Interaction. Artificial Intelligence 159, 241–259 (2004)

    Article  Google Scholar 

  7. Millán, J.R., Renkens, F., Mouriño, J., Gerstner, W.: Noninvasive Brain-Actuated Control of a Mobile Robot by Human EEG. IEEE Transactions on Biomedical Engineering 51, 1026–1033 (2004)

    Article  Google Scholar 

  8. Doherty, J., Porayath, R.: A Robust Echo Canceler for Acoustic Environments. IEEE Transactions on Circuits and Systems, II 44, 389–398 (1997)

    Article  Google Scholar 

  9. Blankertz, B., Curio, G., Müller, K.R.: Classifying Single Trial EEG: Towards Brain Computer Interfacing. In: Dietterich, T.G., Becker, S., Ghaharamani, Z. (eds.) Advances in Neural Information Processing Systems, pp. 157–164. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Wang, Y., Zhang, Z., Li, Y., Gao, X., Gao, S., Yang, F.: BCI Competition 2003-Data Set IV: An Algorithm Based on CSSD and FDA for Classifying Single-Trial EEG. IEEE Transactions on Biomedical Engineering 51, 1081–1086 (2004)

    Article  Google Scholar 

  11. Kaper, M., Meinicke, P., Grossekathoefer, U., Lingener, T., Ritter, H.: BCI Competition 2003-Data Set IIb: Support Vector Machines for the P300 Speller Paradigm. IEEE Transactions on Biomedical Engineering 51, 1073–1076 (2004)

    Article  Google Scholar 

  12. Lu, B., Shin, J., Ichikawa, M.: Massively Parallel Classifiation of Single-Trial EEG Signals Using a Min-Max Modular Neural Network. IEEE Transactions on Biomedical Engineering 51, 551–558 (2004)

    Article  Google Scholar 

  13. Mclachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, New York (2000)

    Google Scholar 

  15. Glentis, G.O., Berberidis, K., Theodoridis, S.: Efficient Least Square Adaptive Algorithms for FIR Transversal Filtering. IEEE Signal Processing Magzine 16, 13–41 (1999)

    Article  Google Scholar 

  16. Perrin, R., Pernier, J., Bertrand, O., Echallier, J.: Spherical Spline for Potential and Current Density Mapping. Electroencephalography and Clinical Neurophysiology 72, 184–187 (1989)

    Article  Google Scholar 

  17. Perrin, R., Pernier, J., Bertrand, O., Echallier, J.: Corrigendum EEG 02274. Electroencephalography and Clinical Neurophysiology 76, 565 (1990)

    Article  Google Scholar 

  18. McFarland, D.J., McCane, L.M., David, S.V., Wolpaw, J.R.: Spatial Filter Selection for EEG-Based Communication. Electroencephalography and Clinical Neurophysiology 103, 386–394 (1997)

    Article  Google Scholar 

  19. Millán, J.R.: On the Need for On-Line Learning in Brain-Computer Interfaces. In: Proceedings of 2004 International Joint Conference on Neural Networks, Budapest, Hungary (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, S., Zhang, C., Lu, N. (2005). On the On-line Learning Algorithms for EEG Signal Classification in Brain Computer Interfaces. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11540007_79

Download citation

  • DOI: https://doi.org/10.1007/11540007_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28331-7

  • Online ISBN: 978-3-540-31828-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics