Skip to main content

A Structured Set of Higher-Order Problems

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3603))

Included in the following conference series:

Abstract

We present a set of problems that may support the development of calculi and theorem provers for classical higher-order logic. We propose to employ these test problems as quick and easy criteria preceding the formal soundness and completeness analysis of proof systems under development. Our set of problems is structured according to different technical issues and along different notions of semantics (including Henkin semantics) for higher-order logic. Many examples are either theorems or non-theorems depending on the choice of semantics. The examples can thus indicate the deductive strength of a proof system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, P.B.: General models and extensionality. J. of Symbolic Logic 37(2), 395–397 (1972)

    Article  MATH  Google Scholar 

  2. Andrews, P.B.: On Connections and Higher Order Logic. J. of Automated Reasoning 5, 257–291 (1989)

    Article  MATH  Google Scholar 

  3. Andrews, P.B.: Classical type theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 15, vol. 2, pp. 965–1007. Elsevier Science, Amsterdam (2001)

    Chapter  Google Scholar 

  4. Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, 2nd edn. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  5. Andrews, P.B., Bishop, M., Brown, C.E.: TPS: A theorem proving system for type theory. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 164–169. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Andrews, P.B.: Resolution in type theory. J. of Symbolic Logic 36(3), 414–432 (1971)

    Article  MATH  Google Scholar 

  7. Benzmüller, C.: Equality and Extensionality in Automated Higher-Order Theorem Proving. PhD thesis, Saarland University (1999)

    Google Scholar 

  8. Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and extensionality. J. of Symbolic Logic 69(4), 1027–1088 (2004)

    Article  MATH  Google Scholar 

  9. Benzmüller, C., Brown, C.E., Kohlhase, M.: Semantic techniques for higher-order cut-elimination. SEKI Technical Report SR-2004-07, Saarland University, Saarbrücken, Germany (2004), Available at: http://www.ags.uni-sb.de/~chris/papers/R37.pdf

  10. Benzmüller, C., Kohlhase, M.: LEO – a higher order theorem prover. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 139–144. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Benzmüller, C., Sorge, V., Jamnik, M., Kerber, M.: Can a higher-order and a first-order theorem prover cooperate? In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 415–431. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Bonacina, M.P., Hsiang, J.: Incompleteness of the RUE/NRF inference systems. Newsletter of the Association for Automated Reasoning 20, 9–12 (1992)

    Google Scholar 

  13. Boolos, G.: Logic, Logic, Logic. Harvard University Press, Cambridge (1998)

    Google Scholar 

  14. Brown, C.E.: Set Comprehension in Church’s Type Theory. PhD thesis, Department of Mathematical Sciences, Carnegie Mellon University (2004)

    Google Scholar 

  15. Church, A.: A formulation of the simple theory of types. J. of Symbolic Logic 5, 56–68 (1940)

    Article  MATH  MathSciNet  Google Scholar 

  16. Digricoli, V.J.: Resolution by unification and equality. In: Joyner, W.H. (ed.) Proc. of CADE-4, Austin, Texas, USA (1979)

    Google Scholar 

  17. Henkin, L.: Completeness in the theory of types. J. of Symbolic Logic 15(2), 81–91 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huet, G.P.: A unification algorithm for typed λ-calculus. Theoretical Computer Science 1, 27–57 (1975)

    Article  MathSciNet  Google Scholar 

  19. Kohlhase, M.: A Mechanization of Sorted Higher-Order Logic Based on the Resolution Principle. PhD thesis, Saarland University (1994)

    Google Scholar 

  20. Kohlhase, M.: Higher-order tableaux. In: Baumgartner, P., Posegga, J., Hähnle, R. (eds.) TABLEAUX 1995. LNCS, vol. 918, pp. 294–309. Springer, Heidelberg (1995)

    Google Scholar 

  21. McCharen, J.D., Overbeek, R.A., Wos, L.A.: Problems and Experiments for and with Automated Theorem-Proving Programs. IEEE Transactions on Computers C-25(8), 773–782 (1976)

    Article  Google Scholar 

  22. Miller, D.: Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Univ. (1983)

    Google Scholar 

  23. Pelletier, F.J.: Seventy-five Problems for Testing Automatic Theorem Provers. J. of Automated Reasoning 2(2), 191–216 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pelletier, F.J., Sutcliffe, G., Suttner, C.B.: The Development of CASC. AI Communications 15(2-3), 79–90 (2002)

    MATH  Google Scholar 

  25. Prehofer, C.: Solving Higher-Order Equations: From Logic to Programming. Progress in Theoretical Computer Science. Birkhäuser, Basel (1998)

    Google Scholar 

  26. Snyder, W., Gallier, J.: Higher-Order Unification Revisited: Complete Sets of Transformations. J. of Symbolic Computation 8, 101–140 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Statman, R.: The typed λ-calculus is not elementary recursive. Theoretical Computer Science 9, 73–81 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sutcliffe, G., Suttner, C.: The TPTP Problem Library. CNF Release v1.2.1. J. of Automated Reasoning 21(2), 177–203 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Wilson, G.A., Minker, J.: Resolution, Refinements, and Search Strategies: A Comparative Study. IEEE Transactions on Computers C-25(8), 782–801 (1976)

    Article  Google Scholar 

  30. Wirth, C.-P.: Descente infinie + Deduction. Logic J. of the IGPL 12(1), 1–96 (2004), www.ags.uni-sb.de/~cp/p/d/welcome.html

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Benzmüller, C.E., Brown, C.E. (2005). A Structured Set of Higher-Order Problems. In: Hurd, J., Melham, T. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2005. Lecture Notes in Computer Science, vol 3603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11541868_5

Download citation

  • DOI: https://doi.org/10.1007/11541868_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28372-0

  • Online ISBN: 978-3-540-31820-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics