Skip to main content

A Design Structure for Higher Order Quotients

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3603))

Included in the following conference series:

Abstract

The quotient operation is a standard feature of set theory, where a set is partitioned into subsets by an equivalence relation. We reinterpret this idea for higher order logic, where types are divided by an equivalence relation to create new types, called quotient types. We present a design to mechanically construct quotient types as new types in the logic, and to support the automatic lifting of constants and theorems about the original types to corresponding constants and theorems about the quotient types. This design exceeds the functionality of Harrison’s package, creating quotients of multiple mutually recursive types simultaneously, and supporting the equivalence of aggregate types, such as lists and pairs. Most importantly, this design supports the creation of higher order quotients, which enable the automatic lifting of theorems with quantification over functions of any higher order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barendregt, H.P.: The Lambda Calculus, Syntax and Semantics. North-Holland, Amsterdam (1981)

    Google Scholar 

  2. Bruce, K., Mitchell, J.C.: PER models of subtyping, recursive types and higher-order polymorphism. Principles of Programming Languages 19, 316–327 (1992)

    Google Scholar 

  3. Chicli, L., Pottier, L., Simpson, C.: Mathematical Quotients and Quotient Types in Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 95–107. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Enderton, H.B.: Elements of Set Theory. Academic Press, London (1977)

    MATH  Google Scholar 

  5. Geuvers, H., Pollack, R., Wiekijk, F., Zwanenburg, J.: A constructive algebraic hierarchy in Coq. Journal of Symbolic Computation 34(4), 271–286 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gordon, M.J.C., Melham, T.F.: Introduction to HOL. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  7. Gordon, A.D., Melham, T.F.: Five Axioms of Alpha Conversion. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, Springer, Heidelberg (1996)

    Google Scholar 

  8. Harrison, J.: Theorem Proving with the Real Numbers, vol. §2.11, pp. 33–37. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  9. Hofmann, M.: A simple model for quotient types. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 216–234. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  10. Homeier, P.V.: Higher Order Quotients in Higher Order Logic. In Preparation; draft, available at http://www.cis.upenn.edu/~hol/quotients

  11. Kalker, T.: at http://www.ftp.cl.cam.ac.uk/ftp/hvg/info-hol-archive/00xx/0082

  12. Leisenring, A.C.: Mathematical Logic and Hilbert’s ε-Symbol. Gordon and Breach, NewYork (1969)

    Google Scholar 

  13. Moore, G.H.: Zermelo’s Axiom of Choice: It’s Origins, Development, and Influence. Springer, Heidelberg (1982)

    Google Scholar 

  14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  15. Owre, S., Shankar, N.: Theory Interpretations in PVS, Technical Report SRI-CSL-01-01, Computer Science Lab., SRI International, Menlo Park, CA (April 2001)

    Google Scholar 

  16. Nogin, A.: Quotient Types: A Modular Approach. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 263–280. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  17. Paulson, L.: Defining Functions on Equivalence Classes, ACM Transactions on Computational Logic, in press. Previously issued as Report, Computer Lab, University of Cambridge, April 20 (2004)

    Google Scholar 

  18. Robinson, E.: How Complete is PER? In: Fourth Annual Symposium on Logic in Computer Science. LICS, pp. 106–111 (1989)

    Google Scholar 

  19. Slotosch, O.: Higher Order Quotients and their Implementation in Isabelle HOL. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 291–306. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Homeier, P.V. (2005). A Design Structure for Higher Order Quotients. In: Hurd, J., Melham, T. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2005. Lecture Notes in Computer Science, vol 3603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11541868_9

Download citation

  • DOI: https://doi.org/10.1007/11541868_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28372-0

  • Online ISBN: 978-3-540-31820-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics